

Accelerator Physics Lecture 8 & 9: Beam Instabilities

Dr Rob Williamson

12th February 2025

Contents

Introduction Wakes and Impedances Wake Fields, Wake Potentials and Wake Functions Impedances Impedance Summary **Beam Instabilities** Longitudinal Instabilities Transverse Instabilities Curing/Mitigating Instabilities Summary

Aims of these Lectures

- Identify what beam instabilities are
- An overview of what drives beam instabilities
- The concepts of wakes and impedances
- Categorisations of beam instabilities
- These lectures provide a qualitative foundation to the complex topic of instabilities. Further details, and quantitative analysis, may be found in the references.

What are Beam Instabilities?

- A beam instability is diagnosed when a moment of the beam distribution exhibits exponential growth (e.g. mean horizontal position, x; vertical standard deviation, σ_x , etc.)
- This exponential growth may leads to emittance growth which can then lead to beam loss.

What are Beam Instabilities?

Particle distribution, $\psi(x, y, z, x', y', \delta)$

$$N = \int_{-\infty}^{\infty} \psi \, dx \, dx' dy \, dy' dz \, d\delta$$

$$\langle x \rangle = \frac{1}{N} \int_{-\infty}^{\infty} x \psi \, dx \, dx' dy \, dy' dz \, d\delta$$

$$\sigma_x = \frac{1}{N} \int_{-\infty}^{\infty} (x - \langle x \rangle)^2 \psi \, dx \, dx' dy \, dy' dz \, d\delta$$

Muon Source

What does it look like? - Stable Beam

$^{\rm ISIS\ Neutron\ and}_{\rm Muon\ Source}$ What does it look like? - Unstable Beam

ISIS Neutron and Why are Beam Instabilities Important?

- When accelerator performance is pushed, accelerators tend to reach an intensity limit.
- With study, understanding, simulation and mitigation often a new, higher limit is reached.
- This pattern can be seen with accelerators reaching to high-intensity or high-energy applications.
- This limit is usually defined by the onset of a beam instability.
- **Typical situation:** A dipolar instability occurs when the beam intensity is raised above a **threshold**. This threshold can be modified (to an extent) by accurate selection of machine parameters.

ISIS Neutron and Why are Beam Instabilities Important?

- Understanding the **type** of instability, what **drives** it and how it changes with different beam and machine parameters, is essential.
- A proper understanding of the instability mechanism allows for appropriate measures to mitigate/suppress the instability.
- This may allow for an increase in beam intensity and/or better emittance conservation.
- An accelerator component found to drive the instability may be modified to limit their impact, or removed entirely.
- Further knowledge also allows for proper specification of an **active feedback system** to damp the instability.

Types of Beam Instabilities

- Beam instabilities occur in both **linear** and **circular** machines.
- They are often characterised by the plane in which they occur: longitudinal (z, δ) or transverse (x, y, x', y').
- Another categorisation is with effects on different length scales: short-range, single bunch instabilities and long-range, multibunch instabilities and coasting beam instabilities.

ISIS Neutron and Introduction to Wakes and Impedances

- Last term's lectures on particle dynamics were concerned primarily with single particle effects (transverse and longitudinal dynamics).
- This term we have seen the effect of treating the beam(s) as distributions of interacting charges (beam-beam and space charge lectures).

ISIS Neutron and Introduction to Wakes and Impedances

Interaction with the environment:

- Beam self-fields (indirect and direct space charge),
- Fields from another bunch/beam (**beam-beam**),
- Electron/ion cloud production and accumulation.

What are Wakes and Impedances?

In order to obtain the additional EM fields from the interaction of the beam with its surroundings two, linked mathematical methods are commonly utilised

- Wake fields in the time domain.
- Beam coupling impedances in the frequency domain.

More about Wakes

A wake is a sustained track left by a moving body (e.g. a duck) in a medium (e.g. water)

More about Wakes

- In the case of a particle beams, the wakes are transient electromagnetic fields generated by the particles' passage.
- These fields must satisfy **Maxwell's equations**.
- The presence of a vacuum chamber imposes boundary conditions that modify these electromagnetic fields.

Wake Fields

- Fields generated by the beam can act on particles passing through that section later in time, affecting their dynamics.
- These fields are termed **wake fields**, and can be longitudinal or transverse:
 - Longitudinal affect the energy of trailing beam particles.
 - Transverse change the trailing particles' transverse momenta.

Wake Fields (general)

First, consider two particles travelling at $v \approx c$ in a perfectly conducting beampipe.

• With no changes in beampipe size, the source and witness particle (separated by a longitudinal distance z) feel no external forces.

Wake Fields (general)

First, consider two particles travelling at $v \approx c$ in a perfectly conducting beampipe.

- With no changes in beampipe size, the source and witness particle (separated by a longitudinal distance z) feel no external forces.
- When the source particle encounters a discontinuity (e.g. cavity, device, change in cross-section) it leaves a wake field in the structure.

Wake Fields (general)

First, consider two particles travelling at $v \approx c$ in a perfectly conducting beampipe.

- With no changes in beampipe size, the source and witness particle (separated by a longitudinal distance z) feel no external forces.
- When the source particle encounters a discontinuity (e.g. cavity, device, change in cross-section) it leaves a wake field in the structure.
 - The source particle loses energy to the field.
 - The witness particle feels a force due to the field.

Wake Fields (general)

As we saw earlier, a pipe with finite conductivity causes fields to "drag" behind the source particle.

- The finite conductivity introduces a delay in the induced wall current.
- This produces a delayed electromagnetic field
 - Unlike a cavity, there's no ringing, only a slow decay.
 - The witness particle feels a force due to the field as before.

Muon Source

Wake Potentials and Wake Functions

- A complete description of the wake field will give the electric and magnetic field components as a function of time and position.
- Wake fields are dependent on the precise particle distribution, beampipe geometry and material properties.
- Typically a simplified description is called for, enabling analysis of their effect on beam dynamics: wake functions and wake potentials.
- These are evaluated for a given section of beampipe and provide the effect of a source particle on a witness particle as a function of the distance between them.

Wake Potentials

• The **wake potential** is the energy change induced by the wake field of a source particle on the witness particle.

$$V = \int_{-L/2}^{L/2} \vec{F} d\vec{s} = \int_{-L/2}^{L/2} q_{source} (\vec{E} + \vec{v} \times \vec{B}) d\vec{s}$$

- The wake force, \vec{F} is integrated over a period L (the length of the structure of interest) and is only a function of z = s vt.
- The wake potential can be evaluated in the longitudinal or transverse planes.

Wake Functions

• The **wake function** is essentially the wake potential induced per unit charge.

۲

$$\begin{split} W_{\parallel}(z) &= -\frac{1}{q_{source} \; q_{witness}} \int \vec{F} d\vec{s} \\ &= -\frac{\Delta E_{witness}}{q_{source} \; q_{witness}} \end{split}$$

 Here, the wake function W_{||} is the longitudinal wake function for the given component (units of VC⁻¹).

Wake Functions

• The transverse wake function is

$$W_x(z) = -\frac{1}{q_{source} q_{witness}} \frac{1}{\Delta x_{source}} \int \vec{F} d\vec{s}$$
$$= -\frac{E_0}{q_{source} q_{witness}} \frac{\Delta x'_{witness}}{\Delta x_{source}}$$

- There is a similar function for $W_y(z)$.
- For axisymmetric structures $W_x = W_y$ and is often just written W_{\perp} .
- The transverse wake function is in units of VC⁻¹m⁻¹.

Properties of Wake Functions

- $W_{\parallel}(z) = 0$ for z > 0 assuming $v \approx c$.
- Immediately behind the source particle, $z \to 0$, the witness particle should receive a retarding force implying $W_{\parallel}(z \to 0) > 0.$
- The value of the wake at z = 0 is given by the fundamental theorem of beam loading.
- Therefore, $W_{\parallel}(z)$ is discontinuous at z = 0.

Muon Source

Properties of Wake Functions

- $W_{\perp}(z) = 0$ for z > 0 assuming $v \approx c$.
- The transverse wake is typically defined with $W_{\perp}(z \to 0) = 0$ unless space charge is included.
- Immediately behind the source particle the wake is negative indicating witness particles are deflected toward the source particle.
- The wake has a discontinuous derivative at z = 0.

Calculating Wake Functions

- In simple situations the wakes can be calculated analytically. However, wake potentials and wake functions are usually calculated numerically, using codes.
- Fields are calculated on a mesh using Maxwell's equations as the charge distribution moves through the component, with geometry and material properties specified.
- In this lecture we will not cover codes, or the process of extracting wake fields, but rather focus on their effects on beam dynamics.

What are Impedances?

- The wake function is an accelerator component may be thought of as its Green's function in the time domain (i.e. its response to a pulse excitation).
- Useful for macroparticle simulations, as it can easily be added to the single particle equations of motion.
- However, sometimes it's helpful to move to the frequency domain. The **beam coupling impedance** is the Fourier transform of the wake function

$$Z_{\parallel}(\omega) = \int_{-\infty}^{\infty} W_{\parallel}(z) e^{-i\omega z/c} \frac{dz}{c}$$
$$Z_{\perp}(\omega) = i \int_{-\infty}^{\infty} W_{\perp}(z) e^{-i\omega z/c} \frac{dz}{c}$$

Muon Source

Physical Interpretation of Impedance

- Wake function describes the change in energy (W_{\parallel}) or transverse kick (W_{\perp}) resulting from the electromagnetic wake field of one particle acting on another as they both pass through an accelerator component.
- Beam coupling impedance, perhaps, requires a bit more careful thought to realise its usefulness.
- Let's start by considering the beam in the frequency domain (i.e. the frequency components of the beam current measured at some point in the accelerator).

$$\lambda(z') = \frac{1}{2\pi} \int \tilde{\lambda}(\omega) e^{i\omega z'/c} \, d\omega$$

Muon Source

Physical Interpretation of Impedance

• Recall, the longitudinal wake function for a witness charge, *e* following a source "particle" of charge *Ne* through a section of accelerator is

$$W_{\parallel}(z) = -\frac{\Delta E_{witness}(z)}{Ne^2}$$
$$\Delta E_{witness}(z) = -Ne^2 W_{\parallel}(z)$$

• In the case of a wake generated by a charge distribution (charge per unit length, $\lambda(z')$) this energy change becomes

$$\Delta E_{witness}(z) = -e^2 \int \lambda(z') W_{\parallel}(z-z')dz'$$

Muon Source

Physical Interpretation of Impedance

$$\Delta E_{witness}(z) = -e^2 \int \lambda(z') W_{\parallel}(z-z') dz'$$

• Substituting the expression for the beam spectrum into this equation and changing variables from z' to z - z'

$$\Delta E_{witness}(z) = \frac{e^2}{2\pi} \int \int \tilde{\lambda}(\omega) e^{i\omega z/c} W_{\parallel}(z') e^{-i\omega z'/c} dz' d\omega$$

• Notice the last part looks our definition for longitudinal impedance

$$\Delta E_{witness}(z) = \frac{e^2 c}{2\pi} \int \tilde{\lambda}(\omega) Z_{\parallel}(\omega) e^{i\omega z/c} \, d\omega$$

Muon Source

Physical Interpretation of Impedance

• With a Fourier transform of this (and rearranging slightly) we get

$$\int \frac{\Delta E_{witness}(z)}{e} e^{-i\omega z/c} \frac{dz}{c} = ec\tilde{\lambda}(\omega) Z_{\parallel}(\omega)$$

- The left hand side is a Fourier transform of an energy change per unit charge, or a voltage.
- The right hand side is simply the product of the "current spectrum", $\tilde{I}(\omega) = ec\tilde{\lambda}(\omega)$, and the impedance.
- Hence, with some appropriate definitions, the "voltage spectrum", $\tilde{V}(\omega)$, may be written

$$\tilde{V}(\omega)=\tilde{I}(\omega)Z_{\parallel}(\omega)$$

Muon Source

Physical Interpretation of Impedance

$$\tilde{V}(\omega) = \tilde{I}(\omega) Z_{\parallel}(\omega)$$

- Here we can see that the picture is analogous to an electrical circuit.
- The impedance tells us, in the frequency domain, the voltage seen by the beam due to the beam current passing through the component.
- Note, the equation also shows that the impact of the impedance depends on the "overlap" of the impedance with the beam current spectrum.

Impedances (general)

$$Z(\omega) = Z_{\mathcal{R}}(\omega) + iZ_{\mathcal{I}}(\omega)$$

- In general, impedances are complex functions with real and imaginary parts.
- A particle beam can cover a wide frequency spectrum, from kHz, to the revolution frequency, up to many GHz dependent on the bunch length.
- Every component in an accelerator presents an impedance to the beam. What matters is how large the impedance is in the same frequency range of the beam.
- The impedance depends on the precise geometry and material make-up of the component.

Impedances (general)

	Z_{\parallel}	Z_{\perp}
Units	Ω	$\Omega/{ m m}$
Symmetry	$Z_{\parallel,\mathcal{R}}(\omega) = Z_{\parallel,\mathcal{R}}(-\omega)$	$Z_{\perp,\mathcal{R}}(\omega) = -Z_{\perp,\mathcal{R}}(-\omega)$
	Even	Odd
	$Z_{\parallel,\mathcal{I}}(\omega) = -Z_{\parallel,\mathcal{I}}(-\omega)$	$Z_{\perp,\mathcal{I}}(\omega) = Z_{\perp,\mathcal{I}}(-\omega)$
	Odd	Even
Typ. scale	$\sim \Omega$	$\sim M\Omega/m$

- Negative frequencies are used to make calculations simpler.
- For a resistive cylindrical pipe $Z_{\perp} = 2cZ_{\parallel}/b^2\omega$.

Resonator Impedances

• A "cavity" can be modelled as an AC electrical circuit with

$$\omega_r = \frac{1}{\sqrt{LC}}$$
 $Q = R\sqrt{\frac{C}{L}} = \frac{R}{L\omega_r} = RC\omega_r$

- The resonant frequency, ω_r , is related to the oscillation of E_z , and the frequency of the mode excited.
- The decay time depends on how quickly the stored energy is dissipated (quality factor, Q).

Resonator Impedances

• If the current is modelled as $I = I_0 e^{i\omega t}$ then the impedance can be expressed as

$$Z_{\parallel,resonator}(\omega) = R \left[\frac{1 - iQ\left(\frac{\omega^2 - \omega_r^2}{\omega\omega_r}\right)}{1 + Q^2\left(\frac{\omega^2 - \omega_r^2}{\omega\omega_r}\right)^2} \right]$$

• The resonator impedance has real (resistive) and imaginary (inductive/capacitive) parts.

Resonator Impedances

• For high-Q cavities (narrowband resonators) this equation can be simplified near the resonance frequency to

$$Z_{\parallel,resonator}(\omega) \approx R \left[\frac{1 - i2Q \frac{\Delta \omega}{\omega_r}}{1 + \left(2Q \frac{\Delta \omega}{\omega_r}\right)^2} \right]$$

- High Q means the cavity resonates well, and the wake field is sustained for long periods and may produce **multibunch effects**.
- For low Q (~ 1, broadband resonators), the fields dissipate quickly and do not affect subsequent bunches.
- These may still produce **single bunch effects**.

Resistive Wall Impedance

- In a conductive beampipe, the particle beam induces an image current in a thin layer of the pipe.
- The wake decays as the figure above. On axis the wake function may be calculated

$$\begin{split} W_{\parallel}(z) &= \frac{c}{4\pi b} \sqrt{\frac{Z_0}{\pi \sigma}} \frac{L}{|z|^{3/2}} \\ W_{\perp}(z) &= \frac{c}{\pi b^3} \sqrt{\frac{Z_0}{\pi \sigma}} \frac{L}{|z|^{1/2}} \end{split}$$

Resistive Wall Impedance

• This results in an impedance that is asymptotic at low frequency.

$$Z_{\parallel}(\omega) = (1-i)\frac{L}{2\pi\sigma\delta_s b}$$
$$Z_{\perp}(\omega) = (1-i)\frac{2cL}{\pi\omega\sigma\delta_s b^3}$$

- Where $\delta_s = \sqrt{2c/Z_0\sigma|\omega|}$ is the skin depth, b is the beampipe radius and σ is the conductivity of the beampipe material.
- Note the behaviour with beampipe radius.

Resistive Wall Impedance

• This results in an impedance that is asymptotic at low frequency.

$$Z_{\parallel}(\omega) = (1-i)\frac{L}{2\pi\sigma\delta_s b}$$
$$Z_{\perp}(\omega) = (1-i)\frac{2cL}{\pi\omega\sigma\delta_s b^3}$$

- Where $\delta_s = \sqrt{2c/Z_0\sigma|\omega|}$ is the skin depth, b is the beampipe radius and σ is the conductivity of the beampipe material.
- Note the behaviour with beampipe radius.

Impedance Summary

Impedance Model

- The impedance model summarises the main contributions from different elements.
- Enables prediction of beam instability thresholds.
- Helps to identify major impedance contributors (potential changes/upgrades).
- May help point to new impedance sources or inaccurate assumptions in existing models.

Beam Instabilities

- The range of phenomena associated with wake fields is quite large.
- Classifying the effects is not straightforward.
- Often categorised by: the plane in which they occur (longitudinal or transverse), and the length/time scale over which they occur (single bunch or multibunch instabilities).
- Understanding what instability occurs can help identify what drives it and how to cure/mitigate it.

Example Instabilities

Over the years many instabilities have been observed, categorised, explained and (sometimes) cured, e.g.:

- Negative mass instability (1959)
- Resistive wall instability (1960)
- Robinson instability (1964)
- Beam break-up instability (1966)
- Head-tail instability (1969)
- Microwave instability (1969)
- Beam-beam limit in colliders (1971)
- Potential well distortion (1971)
- Transverse mode coupling instability (1980)

Example Instabilities

Over the years many instabilities have been observed, categorised, explained and (sometimes) cured, e.g.:

- Hose instability (1987)
- Coherent synchrotron radiation instability (1990)
- Sawtooth instability (1993)
- Electron beam-ion instability (1996)
- Electron cloud instability (1997)
- Microbunching instability (2005)

• ...

Negative Mass Instability

- Imagine an unbunched, coasting beam with a number of modulations in the line density $\lambda(s)$ around a ring.
- Will these "humps" increase or decrease?
- Focussing on one "hump" imagine particles at A and B.
- The longitudinal space charge force $(\propto -\partial \lambda/\partial s)$ implies particle A decreases and B increases in energy.

Negative Mass Instability

- Particle A is decelerated as it "sees" more charge ahead of it than behind.
- Particle *B* is accelerated as it "sees" a larger charge behind it pushing it forward.
- Is this stable?
- It depends on whether we're above or below **transition**.

Negative Mass Instability

- $\gamma < \gamma_t$: An increase in energy increases ω_0 . A and B move away from the "hump", smoothing it out. \implies **STABLE**.
- $\gamma > \gamma_t$: An increase in energy decreases ω_0 . A and B move toward the "hump" making it bigger. \implies UNSTABLE.
- Hence described as the **negative mass instability**.

Transverse Beam Signals

- A single particle on a central orbit produces a longitudinal signal.
- The spectrum, λ̃(ω), is a series of peaks at harmonics of the revolution frequency, ω₀.
- What about the transverse?

Transverse Beam Signals

- Now imagine a particle oscillating about the axis.
- Transverse lectures have shown that the solution at a particular point in a lattice is

$$y(t) = \hat{y}\cos(\omega_{\beta}t + \phi) \tag{1}$$

• Where
$$\omega_{\beta} = Q\omega_0 = (k+q)\omega_0$$
.

Dr Rob Williamson

51/75

Transverse Beam Signals

- Now imagine a particle oscillating about the axis.
- Transverse lectures have shown that the solution of the equation of motion is

$$y(t) = \hat{y}\cos(\omega_{\beta}t + \phi)$$

• Where
$$\omega_{\beta} = Q\omega_0 = (k+q)\omega_0$$
.

d

ISIS Neutron and Muon Source

Transverse Beam Signals

• Computing its signal at a particular point in the ring

$$(t) = \hat{y}\cos(Q\omega_0 t + \phi)\frac{q}{2\pi R}\sum_{n=-\infty}^{+\infty} e^{in\omega_0 t}$$
$$= \frac{q\hat{y}}{4\pi R} \left[e^{i(Q\omega_0 t + \phi)} + e^{-i(Q\omega_0 t + \phi)} \right] \sum_{n=-\infty}^{+\infty} e^{in\omega_0 t}$$
$$= \frac{q\hat{y}}{2\pi R}\sum_{n=-\infty}^{+\infty} \cos\left[(n+Q)\omega_0 t + \phi\right]$$

• What does is spectrum look like?

Transverse Beam Signals

- The spectrum of the signal d(t) is a series of equi-spaced lines of constant amplitude.
- These lines are at frequencies that correspond to $(n+Q)\omega_0$ where n is any integer.
- What would we see on an oscilloscope or network analyser?

Transverse Beam Signals

- On a network analyser we only see positive frequencies. The negative frequency lines are reflected about $\omega = 0$.
- In our case of Q = 2.25 the negative frequency lines become the lower **betatron sidebands** (green) and the positive frequency lines are the upper sidebands.
- Sidebands are $q\omega_0$ away from the revolution harmonic.

ISIS Neutron and

Muon Source

Transverse Coasting Beam Instability

- Imagine a scenario with particles arranged with a strict correlation between their longitudinal and transverse positions.
- The mode shown is n = 4, with four "humps" such that a snapshot gives $y = y_4 e^{-4i\theta}$.
- Each particle moves around the machine at ω₀, but the pattern rotates at ω_n ≠ ω₀.

ISIS Neutron and

Muon Source

Transverse Coasting Beam Instability

- A position of particle at θ_0 at t = 0 will evolve as $y_{\theta_0}(t) = y_n e^{i(Q\omega_0 t n\theta_0)}$
- After a time t the azimuth is $\theta = \theta_0 + \omega_0 t$
- Substitute into y(t)

$$y(\theta, t) = y_n e^{i[(Q+n)\omega_0 t - n\theta]}$$

ISIS Neutron and Muon Source Transverse Coasting Beam Instability

$$y(\theta, t) = y_n e^{i[(Q+n)\omega_0 t - n\theta]}$$

- For this pattern to be constant $(Q+n)\omega_0 t n\theta = 0$
- As such, $\theta(t) = (1 + Q/n)\omega_0 t$
- The derivative of this, $\dot{\theta}$, is the rotation frequency of the mode ω_n

$$\omega_n = \dot{\theta} = \left(1 + \frac{Q}{n}\right)\omega_0$$

• Now we have three scenarios to consider:

$$n < -Q \qquad -Q < n < 0 \qquad n > 0$$

ISIS Neutron and

Muon Source

Transverse Coasting Beam Instability

• Snapshots at times t_0 (1), $t_0 + \Delta t$ (2) and $t_0 + 2\Delta t$ (3).

	n < -Q	-Q < n < 0	n > 0
	$0 < \omega_n < \omega_0$	$\omega_n < 0$	$\omega_n < \omega_0$
Pattern	slower than	backwards	faster than
moves	particle		particle
Wave speed	slow	backwards	fast

Growth Rate

- Only one mode *n* (single betatron sideband) relevant $\Rightarrow Z_{\perp}$ around frequency $(Q+n)\omega_0$.
- Do any modes grow? Assume that the Lorentz force is constant around the ring for a given y

$$F = q(\vec{E} + \vec{v} \times \vec{B})_{\perp}$$

$$F(\theta, t) = -i\frac{q\beta I Z_{\perp}}{2\pi R}y(\theta, t)$$

$$= -i\frac{q\beta I Z_{\perp}}{2\pi R}y_{n}e^{i[(Q+n)\omega_{0}t - n\theta]}$$

• Substitute in $\theta(t) = \theta_0 + \omega_0 t$

$$F(t) = -i\frac{q\beta I Z_{\perp}}{2\pi R}y_n e^{i[Q\omega_0 t - n\theta_0]} = -i\frac{q\beta I Z_{\perp}}{2\pi R}y(t)$$

Growth Rate

$$F(t) = -i\frac{q\beta I Z_{\perp}}{2\pi R}y(t)$$

• The equation of motion is now

$$\ddot{y} + Q^2 \omega_0^2 y = \frac{F}{m_0 \gamma} = -i \frac{q\beta I Z_\perp}{2\pi R m_0 \gamma} y(t)$$

$$\ddot{y} + (Q\omega_0 + \Delta \Omega)^2 y = 0 \quad \text{with } \Delta \Omega = i \frac{q\beta I Z_\perp}{4\pi R m_0 \gamma Q \omega_0}$$

• Where we've made the assumption that $(\Delta \Omega)^2$ is negligible such that $(Q\omega_0 + \Delta \Omega)^2 \approx Q^2 \omega_0^2 + 2\Delta \Omega Q \omega_0$

Growth Rate

• Notice the solution to this equation of motion is now

$$y(t) = y_n e^{i[(Q\omega_0 + \Delta\Omega)t - n\theta_0]}$$

- So the $\Delta\Omega$ is a frequency shift, growth or damping rate dependent on the nature of the impedance Z_{\perp}
- With $\omega_0 R = \beta c$ and $\gamma m_0 = E/c^2$

$$\Delta \Omega = i \frac{c I Z_\perp}{4 \pi Q E/q}$$

- Unstable if $\mathcal{I}m(\Delta\Omega) < 0 \Rightarrow \mathcal{R}e(Z_{\perp}[(Q+n)\omega_0]) < 0$
- As such, only **unstable** for (Q + n) < 0, i.e. slow waves.

Bunched Beams

- For bunched beams, the line density may look something like this.
- All particles are performing synchrotron oscillations: their energy changes.
- Without chromaticity, all particles have the same tune (even with changing energy).
- As such, all particles oscillate in phase depending on their initial condition and a BPM difference signal looks like this.

Bunched Beams with Chromaticity

- When chromaticity is non-zero, the Q varies as the particles perform their synchrotron oscillations.
- There is a betatron phase slip between the head and the tail, χ , providing extra "wiggles" along the bunch.
- This alters the observed BPM difference signal.

Head-tail Instability

- A severe limitation on single bunch intensity is the **head-tail instability**.
- Typically occurs for broadband impedances: short wakefields that only interact within the timescale of a single bunch.
- Transverse offsets at the head of the bunch create wakes which act back on the tail of the same bunch.
- The head and tail swap places which may then drive larger transverse oscillations leading to an instability.

Head-tail Instability

- This instability has been observed at many high intensity hadron accelerators.
- The mode that gets excited depends on the bunch spectrum, the impedance and the chromaticity.
- Instabilities, such as these, often limit the performance of the accelerator.
- What can we do?

Can we Cure Instabilities?

- We've found that instabilities are driven by impedances.
- To start mitigating an instability one must first find what drives it: what component(s) and at what frequency(ies).
- Redesigning components to **reduce impedances** at beam frequencies is one possibility.
- One can also **change the beam** to have a different frequency: rapidly accelerating, changing tune, bunch manipulation.
- If instabilities are still a problem they may also be eased by some mechanisms so far not included in our models:
 - Spreads and non-linearities stabilize (Landau Damping).
 - Active feedback systems.

Landau Damping

- The beam can be modelled as N particles oscillating at their own frequency $\omega_1 < \omega < \omega_2$ with a normalised density $g(\omega) \left(\int_{\omega_1}^{\omega_2} g(\omega) d\omega = 1\right)$.
- The single particle response (**incoherent**) to an external driving excitation, $e^{i\Omega t}$ is

$$X = \frac{1}{\omega^2 - \Omega^2} e^{i\Omega t} = \frac{1}{(\omega - \Omega)(\omega + \Omega)} e^{i\Omega t}$$

Landau Damping

- Assuming Ω is close to $\omega \sim \Omega_0$ the sum term $(\omega + \Omega) = 2\Omega_0$.
- Therefore, the **coherent response** is obtained by integrating these single particle responses

$$S = \frac{N}{2\Omega_0} \int_{\omega_1}^{\omega_2} i \frac{\frac{dg(\omega)}{d\omega}}{\omega - \Omega} d\omega \ e^{i\Omega t}$$

Landau Damping

- When the oscillation is outside the frequency range of the particles the coherent response is straightforwardly calculated
- When the oscillation is within the frequency range of the particles, how do we deal with the pole in the integral at ω = Ω?

Landau Damping

- The "trick" is to integrate "around" it in the complex plane.
- This leads to a **principal value (PV)** and a **residuum**.
- The residuum is a resistive term (in phase with the excitation) that absorbs energy.
- The PV is a reactive term (out of phase) that does not absorb energy.

Landau Damping

- The resistive term leads to an area of stability such that coherent oscillations do not occur.
- In the longitudinal plane, for unbunched beams, a handy approximation for the stability limit is described by a circle. Known as the **"Keil-Schnell" criterion**.
- A similar situation occurs in the transverse plane due to a spread of betatron frequencies.

ISIS Neutron and Muon Source

Active Damping Systems

- Position error is picked up by diagnostic.
- Convert this to an appropriate kick at a deflector.
- Betatron phase advance from pick-up to deflector of $\sim (2n+1)\pi/2$.
- Beam travel time and electronic delay time must be accounted for.

ISIS Neutron and Muon Source

Summary

- **Instabilities** are an important factor in the design and operation of particle accelerators.
- Wakefields are generated by the interaction of the beam with its environment.
- The effects of wakefields can be accounted for (with certain assumptions) through **wake functions** or **impedances**.
- Impedances are often separated into longitudinal and transverse and vary as a function of frequency.
- Instabilities can be **mitigated** by changes to the impedance (e.g. component design), changes to the beam (e.g. Landau damping) or active damping as a last resort.

ISIS Neutron and Muon Source

References

- Beam Instabilities, G. Rumolo, CAS Lectures
- Instabilities and Wakefields, *M. Miggliorati*, JUAS Lectures
- Particle Accelerator Physics, H. Wiedemann, Springer
- Introduction to Particle Accelerators, E. Wilson, Oxford University Press
- Beam Dynamics in High Energy Particle Accelerators, A. Wolski, Imperial College Press
- Physics of Intensity Dependent Beam Instabilities, *K. Y. Ng*, World Scientific
- Physics of Collective Beam Instabilities in High Energy Accelerators, A. W. Chao, John Wiley & Sons