HL-LHC ATLAS 4D tracking Project schedule and GNN reconstruction

Rodrigo Estevam de Paula

Marco Aurelio Lisboa Leite

Vitor Heloiz Nascimento

1 October, 2024

Participation on 2024 ACTS Developers Workshop

- Presented our work to a great reception :)
 - Impact of sensor degradation on the time reconstruction of CKF tracking
- Nice integration with all the tracking collaborations
- Got tons of feedback and next steps suggestions
- Meet the important people responsible for ACTS (and ATLAS upgrade tracking)
- Got up to speed with the development of ACTS

CKF still important as ever

2025 Main Objectives

- Continue (and improve) the reconstruction with CKF
- Investigate two (or three) novel reconstruction methods
- Be prepared to present at a conference
- Finish ATLAS Qualification project
- Apply for CERN's doctoral program (to start 2026 onwards)

Continue (and improve) the reconstruction with CKF

- Have ACTS working on SAMPA with HTCondor (done)
- Use Geant4 for particle propagation
 - Need to wait for the ACTS to have the geometry working with Geant4
 - Simulate with Athena and analyse with ACTS
- Use traccc for GPU based ACTS algorithms
 - Lxplus setup
 - Run it on the institute cluster

• Improve primary vertex time reconstruction (t0)

- Adapt particle gun so we can shoot a portion of the particles on the central region and others on the endcaps
- Adapt vertex seed to use time information (Gaussian Track Density Seeder)
- Investigate the tails of residual distribution
 - Maybe caused by the approximation of the speed of low pT particles to c
 - Get PFG particle IDs on the track-states root file (to reconstruct pT)
 - Investigate CMS code for annealing vertex fitting, using different particle hypothesis

Investigate novel reconstruction methods

- What would be the best setup for development
- Method to test:
 - Transformers
 - Cellular Automata
 - CKF?

Conferences

Engineering Conferences:

- ICASSP (06-15 April)
 - Paper deadline submission Sept. 2024
- IEEE SSP Workshop (June)
 - Paper deadline submission: February
- Eusipco (Aug/Sept)
 - Paper deadline submission March
- Asilomar (was Oct.2024)
 - No info yet

Physics events:

- <u>CERN Latin-American School of High-Energy Physics</u> (30 April 13 May)
 - No paper submission, but registration deadline Jan 10

Finish ATLAS Qualification Project

- Need to end before August 2025
- HGTD TDC simulation on Athena
 - Integrate the TDC on the digitization chain (done)
 - Adapt the RDO struct to incorporate the ToA and ToT as output by the electronics
- Improve track to HGTD hit association
 - Setup with Geant4 simulation
 - Test CKF performance
 - Test other association methods (Gaussian Hit Density ?)

Revisiting the schedule

Atividade	S.1	S.2	S.3	S.4	:	.5	S.6	S.7	S.8	S.9	S.10
Disciplinas do Programa da Pós-Graduação											
Revisão da Literatura					T						
Familiarização com os frameworks de reconstrução e análise											
Implementação dos modelos GNN em reconstrução 3D											
Preparação para o exame de qualificação											
Implementação e dos modelos GNN em reconstrução 4D											
Introdução da informação de ToT e degradação do sinal dos sensores no modelo											
Implementação dos métodos em arquiteturas heterogêneas CPU+GPU											
Estudo do desempenho da reconstrução (incerteza sistemática, eficiência, desempenho computacional)											
Estágio no CERN (atividades no HGTD e estudos de reconstrução e validação)											
Preparação da Defesa											

- We're ≈ 9 months ahead 😊
- There are still plenty of ACTS to uncover, but we need to start shifting gears
- Need to start discussing the implementation of new reconstruction methods

Research on new methods

- The most prolific collaboration searching for new methods inside ATLAS is the GNN4ITk
 - Don't know of any other
- GNN4ITk acts as an extension of the Exa.trk collaboration (<u>web page</u>) to apply their solution for ITk
- Would recommend the following readings:

Exa.Trk plugin on ACTS

- ACTS has a plugin to use Exa.Trk GNN reconstruction.
 - Almost sure not adapted to 4D reconstruction as we want

0

TO DOs

- To make the plugin work, I'll have to install CUDA
 - If there's no nvidia card, will have to search for another machine to run with (lxplus?)
- Study the implementation
- Compare the performance with CKF
- How to include time information?

•••

from acts.examples.reconstruction import addExaTrkX, ExaTrkXBackend

if backend == ExaTrkXBackend.Torch: modelDir = Path.cwd() / "torchscript_models" assert (modelDir / "embed.pt").exists() assert (modelDir / "filter.pt").exists() assert (modelDir / "gnn.pt").exists() else: modelDir = Path.cwd() / "onnx_models"

modelDir = Path.cwd() / "onnx_models" assert (modelDir / "embedding.onnx").exists() assert (modelDir / "filtering.onnx").exists() assert (modelDir / "gnn.onnx").exists()

s = runDigitization(

trackingGeometry, field, outputDir, digiConfigFile=digiConfigFile, particlesInput=inputParticlePath, outputRoot=True, outputCsv=True, S=S,

addExaTrkX(

s, trackingGeometry, geometrySelection, modelDir, outputDir, backend=backend,) s.run()

