

Electron cloud report

22nd August 2011 J.M. Jimenez

with contributions from G. Arduini, V. Baglin, S. Claudet, E. Metral and F. Zimmerman

Main topics

- Introduction
- Scrubbing run
- 50 ns beams in Physics
- Other vacuum induced effects
- Perspectives and limitations
- Closing remarks

Introduction

Electron cloud report, CMAC 22 Aug'11 by José Miguel JIMENEZ

Introduction

• The electron cloud build-up:

Is a threshold phenomenon bunches in the train Linear build-up

Is attenuated by the spacing between bunches and bunch trains and by satellite bunches

Depends highly on the Secondary Electron Yield (SEY): δ_{max} , $E_{\delta max}$, reflectivity Is enhanced by the low energy electrons surviving the gaps between bunches

Is affected by many other parameters like:

Size of the beam vacuum pipe Magnetic field (field free, dipole, quadrupole or solenoid field) Gasses condensed on cryogenic beampipe walls

Introduction (2/4)

• The electron cloud induced limitation are:

- Vacuum pressure rise
 - Resulting from electron stimulated desorption (ESD)
 - ΔP signal depend on the ratio: Multipacting length vs effective pumping speed
- Cryogenic cooling capacity
 - Induced by the electron flux to the beam screen inner wall (heat deposition)
 - Heat load limited by the available cooling capacity (capillaries / cryoplants)
- Beam instability
 - Depends on both the electron density and the integrated length over LHC ring
 - Can become a limiting factor for the scrubbing run (emittance blow-up and losses)
- Beam-gas scattering induced radiation and beam losses
 - Depends on both the pressure bump amplitude and length (and on gas species)
 - Can become a limitation by increasing:
 - The single event probability and radiation to cables and electronics
 - The background to the Detectors

CHC vacuum pressure interlocks are set to keep the beam-gas scattering negligible ; at least 1 order of magnitude of margin is available.

Introduction (3/4)

- The electron cloud induced pressure rise need a careful analysis since depending on:
 - Number of circulating beams, magnetic field conditions, beam pipe size, multipacting length, effective pumping speed and location and type of probe

Introduction (4/4)

• The electron cloud induced heat load depends on:

- Electron flux to the inner beam screen wall
- Average energy of the electrons
- Measurements integrated over a half period and for 2 apertures

M.H. Cuna, EuCARD-DIS-2009-002, Nov 2010

...assuming that beams limitations are not dominated by single bunch instabilities or pressure rise!

Scrubbing run

Scrubbing run (1/4)

• A success story !

1020 bunches injected after only 15 hours of scrubbing run ! (@50 ns bunch spacing)

Scrubbing run (2/4)

• The decrease results simultaneously from the decrease of the electron cloud activity (δ) and to the vacuum cleaning (η)

Today, LHC runs with 1380 bunches and pressure rise stay in the 10⁻⁸ mbar range...

More than 3 orders of magnitude below with 1380 bunches as compared to runs with 588 b (April)!

No electron cloud in arcs (50 ns bunch spacing) and in NEG coated beampipes, as expected.

Electron cloud report, CMAC 22 Aug'11 by José Miguel JIMENEZ

Scrubbing run (3/4)

• Decrease of δ and η as a function of dose

Electron cloud report, CMAC 22 Aug'11 by José Miguel JIMENEZ Assuming 20 mW/m induced heat

load (10¹⁵ e-/m/s or 2 10¹⁶ e-/cm²/h).

Scrubbing run (4/4)

• Limits of the Scrubbing run

- A log conditioning can be observed (as expected)
- Runs above the scrubbing threshold induce pressure rise

Electron cloud report, CMAC 22 Aug'11 by José Miguel JIMENEZ

50 ns beams in Physics

50 ns beams in Physics (1/4)

- ATLAS zone (1/2)

50 ns beams in Physics (2/4)

- ATLAS zone (2/2)

50 ns beams in Physics (3/4)

- Alice

50 ns beams in Physics (4/4)

• Summary

- Pressures in experimental beam pipes are factor 10 below the specified values (LHC Design Report)
- Upstream and downstream electron cloud activity at cold/warm transitions in recombination areas (2 circulating beams) is still visible. Nothing where only 1 beam circulates in beam pipe.
 - Operation close to the electron cloud threshold and gas recycling during stoppage of cryogenics (partly solved)
- Fast pressure spikes observed:
 - At injection, during the ramp in energy, simultaneously with beam tuning and orbit optimisations
- Situation more favorable in ATLAS and CMS:
 - Warm D1 with NEG coatings,
 - Not an injection point,
 - No collimator to protect the cold D1,
 - Vacuum layout at D1 more favorable (to be modified at LS1).

Other vacuum induced effects

Other vacuum induced effects (1/4)

• Temperature dependence of the cryo-beam vacuum: Procedure to optimise the Beam Screen temperature stability

Peaks 25-27K

Automatism now in place Lower peak values, reproducibility

Other vacuum induced effects (2/4)

• Temperature dependence of the cryo-beam vacuum: Procedure to flash gas from Beam Screen to Cold Bore

Other vacuum induced effects (3/4)

• Injection collimators operated as "active" collimators and no longer as passive absorbers?

12-08-2011

04-00-00

12-08-201

05:00:00

12-08-201

06-00-00

12-08-2011

07-00-00

12-08-2011

08:00:00

12-08-2011

09:00:00

12-08-2011

10:00:00

12-08-2011

11:00:00

conductance effect

FN ...

🗧 🛛 day

Close

Time Interval

Filev

7 min 🔮 8 h

Other vacuum induced effects (4/4)

Synchrotron Radiation effects

- With 25 ns beams, more photon flux, from 2.5 10¹⁶ ph/m/s to 5 10¹⁶ ph/m/s with nominal current (2804 bunches) BUT same critical energy (5.5 eV)
- Twice the Pressure increase, still conditioning but it is a log scale !

Perspectives and limitations

Perspectives and limitations (1/5)

Operation with 25 ns beams: 10 times more electron dose required

Perspectives and limitations (2/5)

- Operation with 25 ns beams: more multipacting length expected
 - Arcs and standalone magnets with 1 circulating beam per beam pipe will be multipacting: 50 times more!

Electron cloud report, CMAC 22 Aug'11 by José Miguel JIMENEZ

Perspectives and limitations (3/5)

- Operation with 25 ns beams: Dependence with reflection of low energy electrons
 - 25 ns beam are less depending than 50 ns
 - Reflected electrons could become an issue

Electron cloud report, CMAC 22 Aug'11 by José Miguel JIMENEZ

Perspectives and limitations (4/5)

- Operation with 25 ns beams: Effect of LHCb satellite bunches
 - Electron cloud induced heat load fits the cooling power for 50 ns beams

Perspectives and limitations (5/5)

- Summary (Operation with 25 ns beams)
 - 2-3 weeks of scrubbing will be required to go from δ =1.6 down to 1.2
 - I0 times more dose (~150 hours of beams)
 - Multipacting length will be 50 times longer (entire ring)
 - Reflectivity of low energy electrons will impact the filling scheme
 - 50 ns beams with interleaved LHCb satellite bunches should not be an issue

Closing remarks

Closing remarks (1/2)

- Confirmations
 - Scrubbing runs baseline was confirmed as an efficient way to decrease the electron cloud
 - Less than 1 hour needed in the arcs and the straight sections with one circulating beams at 50 ns bunch spacing
 - 15 hours in beampipe with two circulating beams
 - NEG coatings provide, as predicted, both a distributed pumping and an electron cloud mitigation (no build-up observed)
 - Solenoids help to avoid electron cloud build-up upstream and downstream the experimental areas (background issues)
 - Background and beam lifetime fully compatible with operation in Physics (1 order of magnitude margin with present beam parameters)

Closing remarks (2/2)

• Concerns

- Vacuum system very sensitive to beam losses which induce fast pressure spikes. Cannot be filtered ⇒ machine protection
- Non-NEG coated beam components like beam instrumentation and RF equipments are increasing the electron cloud and gas load
- Cold vacuum strongly dependant on temperature variations between 12 and 30 K ⇒ More demanding for the cryogenic system
 - New procedure are successfully applied

Pending issues

- Operation with 25 ns beams will be challenging
 - Beam instabilities, longer scrubbing runs (×10 more than with 50 ns), heat load issues all around the ring (and not only in the inner triplet as observed today)
 - Needs to keep constant electron flux, still realistic if all arcs are multipacting? (single bunch instabilities)

Reserve (slides)

Introduction (5/)

Specificities of beampipes at cryogenic temperatures

- Unbaked vacuum system by design
- Beam screen's hole provide pumping speed by the cold bore
- Primary and recycling desorption yields : $\eta'_{monolayer} >> \eta$
- Beam screen's surface coverage should stay below a monolayer : minimize the accumulation of gas on the BS (results from electron cloud and synchrotron radiation)
- Scrubbing rate at cryogenic temperature of a bare surface is similar to RT

Scrubing at 200 eV

50 ns Beams in Physics (3/7)

- CMS (1/)

50 ns Beams in Physics (4/7)

- CMS (2/)

50 ns Beams in Physics (6/7)

- LHCb

