Machine Development - Results from the First Two MD Sessions

R. Assmann

for the LHC MD coordination team (R. Assmann, Frank Zimmermann, Giulia Papotti) CERN Machine Advisory Committee, 22.8.2011

R. Assmann

Organization of LHC Machine Time

- The LHC machine schedule includes 4 types of categories.
- Re-commissioning for p, ion setup
 - □ Set up of agreed machine state (\rightarrow Chamonix, Evian)
- Luminosity production
 - Proton luminosity operation
 - Ion luminosity operation
 - □ Commissioning of new machine states for luminosity production (1.36 TeV, forward physics with high β^* , ...)
- Technical stops
- Machine development
 - Machine studies and measurements
 - Improve understanding, test new concepts and ideas, detailed measurements, prepare improvements for higher integrated luminosity, tests for upgrade decisions

							Re-commissioning with beam			Intermediate energy run						
	Jan					Feb	Close	ring I				Mar			1	
Wk	52	1	2	3	4	5	6		7		8	9	10	11		12
Мо		:	s 10	17	11/2	1/1	7		14	1	* 21	79	1	14		21
Tu																
We																
Th			Fechnica	Iston		Hardw	/are								1	
Fr				, stop	1.	commiss	ioning		*							
Sa	1															
Su					///	////										

Start full non-LHC

Ion setup

physics program Sorubbing run May June Apr Wk 13 14 15 16 17 18 19 20 21 22 23 24 25 White Мо Easter 11 16 75 30 13 20 28 16 Tu We Th Ascension 1st May Fr MD G. Friday comp. Sa Su 1st Ma **D1** Injectors - provem physics Technical Stop Recommissioning with beam Special runs (TOTEM etc.) to be schedul Machine development Ion run

MD Time Available

- 22 days allocated to machine development in 2011.
- Decision to link 4 long MD blocks to technical stops (executed just before):
 - □ 4 blocks of 5 days → 60 shifts of 8h
- Total available: 66 shifts ~50-60 MD's 420 h (with 80% efficiency)
- Well planned organization is needed to make sure that this time is used efficiently and according to the priorities defined and approved by the LHC Machine Committee (LMC).

MD Organization

- MD coordinators appointed by Steve Myers:
 - □ Ralph Assmann and Frank Zimmermann.
- Helped by scientific secretary and EIC:
 Giulia Papotti.
- Requests, proposed schedules and results are discussed in the LHC Studies Working Group (LSWG).
- For "critical" MD's formal documents are prepared by MD teams and channeled to Machine Protection Panel for prior safety assessment and approval.
- The LSWG reports proposals of MD program and results to LMC for feedback and approval of priorities.
- In addition coordinate the MD execution, report progress and follow up on the preparation of written MD notes.

http://www.cern.ch/lhc-md

Machine Development
Large Hadron
Collider @ CERN

LHC-MD web site holds detailed info, ATS MD notes by the teams, MD requests, LSWG minutes and presentations, ...

Here I will be generic, focusing on issues relevant for this meeting!

Requests per Category (after combining, cutting)

	Time [h]
Beam-beam MD's	144
RF MD's	110
Optics MD's	114
IR MD's	32
e-cloud MD's	72
Injection and injection protection	58
Collimation	64
Passive Protection Stored Beam	16
Impedance	48
R2E	8
Instrumentation MD's	23
Ion MD's	26
Magnet MD's	8
Total	723

Status after analysis of submitted requests in May 2011.

Detailed list at end of talk, as updated by Frank a couple of weeks ago!

>> 420 h available in 2011

+ additional requests...

Limiting Time Availability and Priorities

- Not enough MD time to do everything in 2011.
- <u>Combining and cutting of MD's</u> already performed, reflecting some prioritization and overlaps.
- Some MD's moved into end-of-fill MD's.
- Long term priorities defined by allocation to 2011 or 2012 MD time. Reflecting Chamonix/LMC input.
- <u>Short term priorities</u> are defined for each MD. Reflecting also operational issues and needs plus outcome of previous MD's (for MD3 → lower β^*).
- MD time allocation must take availability of teams into account.

1st LHC MD Period: May 4th 2011

LHC Page1	Fill: 1757	E: 0 GeV		04-05-201	1 17:26:50
MACH	INE DEVELOPMENT:	CYCLI	NG		
Energy:		0 Ge	۶V		
Post Mortem Info PM event ID: PM event categor PM event classific PM BIS Analysis re PM comment:	Tue May 03 14:03:36 CEST 20 y: PROTECTION_DUMP sation: MULTIPLE_SYSTEM_DUMP esult: First USR_PERMIT change: Ch	011 12-PIC_MSK:	A T –> F on CIB.US	C55.L5.B1	
Comments 04-0	5-2011 16:47:48 :	BIS status a	nd SMP flags	B1	B2
		Link S Gl	tatus of Beam Perm obal Beam Permit	nits true false	true faise
Will cha Mach	Precycling nge to Accelerator mode = ine Development at 5pm	Movea	Setup Beam Beam Presence ble Devices Allowed Stable Beams	false false d In false false	false false false
AFS: 50ns_109b_9	01_12_90_12bpi10inj	PM Status B	L ENABLED PN	A Status B2	ENABLED

R. Assmann

8/22/2011

R. Assmann

Day	Time	MD
Wed	06:00	UPS repair, ATS optics checks w/o beam
	12:00	Cycle, test ATS optics w/o beam
	16:00	0.45 TeV: <u>BPM offset determination for triplet BPMs</u>
Thu	00:00	0.45 TeV: <u>Alignment TCDQ/TDI</u> and injection losses (other beam)
	08:00	0.45 → 3.5 TeV: <u>RF single-bunch instabilities</u>
	14:00	Ramp down, cycle.
	16:00	0.45 → 3.5 TeV: <u>90 m optics</u> unsqueeze
Fri	00:00	Ramp down, cycle
	02:00	0.45 → 3.5 TeV: Cross calibration of BSRT/WS/BGI
	10:00	Ramp down, cycle
	12:00	0.45 TeV: Collision tunes at injection + ramp down, cycle
	20:00	0.45 TeV: <u>Beam-beam limit</u>
Sat	04:00	0.45 TeV: Investigation on CODs

MD Sat – Mon (7.5. – 9.5.)

Day	Time	MD
Sat	10:00	0.45 TeV: ATS (including cycle to new injection settings)
	20:00	0.45 – 3.5 TeV: Nominal collimation, single bunch tune shift
	04:00	Ramp down, cycle
Sun	06:00	0.45 TeV: <u>RF multi-bunch instabilities</u>
	10:00	0.45 → 3.5 TeV: <u>Coupled-bunch instability</u> rise times
	18:00	Ramp down, cycle
	20:00	0.45 \rightarrow 3.5 TeV: Quench test in the DS of IR7
Mon	06:00	Technical Stop
Lost	6h	3.5 TeV: <u>Tune scan</u> – beam-beam optimization, lifetime, losses

MD Wed – Thu (29.6. – 30.6.)

Day	Time	MD	M P
Wed	04:00	Ramp down, cycle	
	06:00	No beam: ATS optics checks w/o beam	
	08:00	Ramp down, cycle.	
	10:00	450 GeV: Injection 25ns – different SPS parameters, first look, transverse damper first look (no detailed setup for 25ns)	В
	16:00	450 GeV: RF setup for high bunch intensity	Α
	22:00	450 GeV: 450 GeV → 3.5 TeV: Beam instrumentation – high bunch intensity, …	B/C
Thu	06:00	Ramp down, cycle.	
	08:00	450 GeV: <u>Head-on beam-beam limit</u> – up to 3e11p per bunch, coherent modes. BI parasitically.	Α
(0.044	16:00	450 GeV: Injecting nominal emittances, MKI & UFO's – 50ns, blow-up in SPS, SPS scraping and losses, injection into LHC, nominal emittance.	В

Day	Time	MD	M P
Fri	01:00	Switch back to operational injection settings. Verification.	
	03:00	450 GeV \rightarrow 3.5 TeV: RF – longitudinal beam stability.	В
	16:00	Ramp down, cycle.	
	18:00	450 GeV \rightarrow 3.5 TeV: Long-range beam-beam limit – lifetime, emittance versus beam-beam separation. Collimation with changing crossing angle.	С
Sat	02:00	Ramp down, cycle.	
	04:00	450 GeV: Non-linear dynamics – Dynamic aperture, non-linear chromaticity and frequency map.	Α
	12:00	If needed: Precycle.	
	14:00	3.5 TeV: Collimation – combined cleaning, faster setup.	Α
	22:00	Ramp down, cycle.	

Day	Time	MD	MP
Sun	00:00	3.5 TeV: <u>ATS</u> – correction & pre-squeeze.	Α
	08:00	Ramp down, cycle.	
	10:00	450 GeV: <u>Beam distribution in LHC</u> – scraping, halo, tails, BLM limits, (high intensity)	В
	14:00	450 GeV: <u>Quench margin at injection</u> – observation with special QPS instrumentation, losses from TCLIB collimator, TCDQ checks in parallel	С
	22:00	450 GeV: <u>R2E</u> – slow controlled losses (1e13p on Q14.R2.B1).	Α
Mon	06:00	Technical Stop	

Needs from experiments:

30.6., 08:00 to 16:00 – Luminometers on in ATLAS and CMS 01.7., 18:00 to 02:00 – Luminometers on in ATLAS and CMS

Efficiency and Scheduling (MD#2)

- Available MD hours: 120.0 h
 Scheduled for MD: 104.0 h (87% of total time)
 Availability for MD: 92.7 h (89% of scheduled time) (77% of total time)
 - → Scheduling worked: Explicit scheduling of recovery time which was indeed always needed.
 - Biggest loss: 4h43 (60% of scheduled time of MD)
 - Overall, excellent availability. We could get data for all MD's, even though for some in very limited time!
 - Thanks to the HW groups: Cryo, vacuum, PC, magnets, RF, QPS, instrumentation, collimators, BI, kickers, infrastructure, …

MD#1 Notes

#	MD
1	Alignment TCDQ/TDI and injection losses (other beam)
2	90 m optics unsqueeze
3	Collision tunes at injection + ramp down, cycle
4	Beam-beam limit
5	ATS (including cycle to new injection settings)
6	Nominal collimation, single bunch tune shift
7	RF multi-bunch instabilities
8	Quench test in the DS of IR7
9	BPM offset determination by K modulation
10	RF single-bunch instabilities
11	Transverse profile monitors BSRT/WS/BGI
12	Transverse coupled-bunch instability rise times
13	Investigation on CODs

MD#2 Notes

#	MD
1	Injection of bunches with 25 ns spacing
2	Nonlinear beam dynamics tests
3	Longitudinal single-bunch stability with phase-loop on
4	Beam distribution measurements
5	Head-on beam-beam with high intensity & LR-BB studies
6	ATS MD part II
7	IR3 combined cleaning test at 3.5 TeV
8	Improving LHC collimator set up at 3.5 TeV
9	MD on injection quality – longitudinal & transverse
10	MKI UFOs at injection
11	BI studies (draft exists)
12	Quench margin at injection
13	R2E

Achievements MD1

- MD1 proved excellent performance potential of LHC:
 - No head-on beam-beam limit encountered with 3 times nominal brightness. Total tune shift: 0.03 with ATLAS/CMS collisions.
 - □ **ATS** injection optics with **different integer tunes** fine to 3.5 TeV.
 - Collimation system reached tighter settings with better cleaning efficiency. Limited by setup accuracy and stability.
 - Collimation system (operational physics settings) reached 500 kW primary beam loss without quench in dispersion suppressor.
 - Impedance and instabilities under control.
- Operational improvements:
 - □ **K-modulation** for better orbit and aperture.
 - □ **90m optics** for ALFA and TOTEM works fine.
 - □ First test of bunch blowup with transverse damper.
 - Emittance cross-calibration data collected.
 - □ Shielding transfer lines for **more tolerant injection**.
 - □ Data for some suspected dipole correctors.

R. Assmann

Achievements MD2

- First injection of 25 ns bunch trains with up to 216 bunches.
- Collision of bunches with twice nominal intensity and half emittance, demonstrating 8 times nominal bunch luminosity.
- Injection and storage of even higher bunch intensities with nominal emittance.
- Collision of 50 ns bunch trains with 4-5 sigma separation, demonstrating margin in long-range beam-beam effects.
- First squeeze to below 1.5 m, demonstrating $\beta^* = 0.3$ m with pilot beam, flat machine, no collisions and ATS optics.
- Many, many detailed studies that allow to achieve the above and will make it usable (RF, injection, collimation, quench margins, R2E, optics, BI, ...). The devil is in the details!

Achievements MD2 in numbers

2.7×10¹¹ p/bunch N_p High bunch intensity in LHC: = 3.3 µm excellent beam lifetime ≈ γε 2.3×10¹¹ p/bunch Colliding beam @ 450 GeV: N_n **1.7** μm twice nominal intensity, half nominal ~ γε emittance, head-on & parallel separation OK **48** μ **rad** for $\tau \approx 15$ h Long-range beam-beam for 50ns: $\alpha_{c}/2$ crossing angle can be more than halved 216 Short bunch spacing \rightarrow 25ns: N_{bunch} = N_p 1.2×10¹¹ p/bunch 24b trains, vacuum ~OK, heat load ~OK, = 2.7 μm first batches instabilities, better than 50ns at same stage γε ≈ Injection: ≈ 3.5 μ m OK for γε injection Tune working point: $Q_x/Q_v =$ 0.47/0.47 more space in tune diagram for BB footprint β* ATS optics: 0.3 m =

MD Results: Bunch Intensity and Emittance

High Bunch Charge in LHC RF/BI/OP/Injector Teams

High Bunch Charge in LHC RF/BI/OP/Injector Teams

Emittance in the LHC for 2.6e11 p/bunch:

- 🗆 B1H: 3.3, 3.5 μm
- 🗆 B1V: 3.1, 3.2 μm
- 🗆 B2H: 3.7 μm
- 🗆 B2V: 3.9 μm
- Injection oscillations:
 Damper fine...

MD's on Instabilities (ABP/ICE, RF)

- Several MD's performed on single and multi-bunch instabilities. Important subjects behind LHC success.
- Beams kept stable by use of feedbacks, proper working point tuning, octupoles, ... Works fine! Very low losses!
- No critical issues here at the moment, therefore details in appendix for the interested...

P. Baudrenghien, E. Chaposhnikova, E. Metral and colleagues...

MD Results: Bunch Intensity and Emittance

July: Luminosity per Colliding Bunch (IP1/5)

Bunch Intensity

July: Luminosity per Colliding Bunch (IP1/5)

MD Results: Bunch Intensity and Emittance

Design 7 TeV Power Loss: No quench!

10 x Better Coll. Efficiency (Coll → SC Magnet)

better

Figure 5: Beam 1 and Beam 2 maximum local cleaning inefficiency in the cold parts of the LHC at 3.5TeV over about one year operation. The results from this MD are contained in the second and third sets of points from the right, where a clear decrease can be observed.

R. Assmann

MD Results: Bunch Intensity and Emittance

CERN-ATS-Note-2011-029 MD

P1

Lσh

0.31

No collision

 $T Q^{\Lambda}$

0.32

 $19~{\rm May}~2011$

Werner.Herr@cern.ch

Head-on beam-beam tune shifts with high brightness beams in the LHC

Participants:

R. Alemany, X. Buffat, R. Calaga, K. Cornelis, M. Fitterer, R. Giachino,
W. Herr, A. McPherson, R. Miyamoto, G. Papotti, T. Pieloni, S. Redaelli,
F. Roncarolo, M. Schaumann, R. Suykerbuyk, G. Trad
CERN, CH-1211 Geneva 23
S. Paret

 $\pi_{\rm h}$

0.29

π.,

0,30

frequency [frev]

-50

B1 [db] - 60

LBNL, U.S.A.

No limit found for headon beam-beam effects for the intensities investigated so far

Figure 13: Tune spectra without and with two collisions, horizontal plane for beam 1 and beam 2 (fill 4).

8/22/2011

MD2: Head-on beam-beam limit (Werner Herr et al)

- Twice nominal bunch intensity, half nominal emittance! Tune-shift and luminosity as expected (~ 0.015/IP).
- Fill 1:

	B1	B2	
Intensity per bunch	2.3e11 p	2.2e11 p	
Emittance H:	1.6 um	1.7 um	
Emittance V:	1.6 um	1.9 um	
Fill 2:			
	B1	B2	
Intensity per bunch	2.2e11 p	2.3e11 p	
Emittance H:	1.9 um	1.9 um	
Emittance V:	1.7 um	2.1 um	

- Highest bunch intensities as achieved in LHC (2.7e11) still to be tested
 - □ Will have somewhat higher emittance

Long-range beam-beam (W. Herr, BB team, coll team)

- One ramp with 12+36 bunches per beam to 3.5 TeV, beta*1.5m in IP 1/5.
- Reduced crossing angle in steps from 120 µrad to 36 µrad and recorded losses.
- Tertiary collimators following the changed orbit.
- First losses observed at separation of 4-5 sigma, reduced lifetime.
- Strong correlation of losses with number of long range interactions (PACMAN effects).
- Detailed analysis will be done.

Reduction crossing angle IR1 (V) and IR5 (H)

Crossing angles in IR1 and IR5 reduced in steps of 5 - 10 %.

TCT's following changed orbit.

100% = 120 μ rad = **12** σ beam-beam separation for ε ~2.5 μ m!

50% fine (no reduction in lifetime), <u>40% (5 σ b-b) still OK</u>, 30% too low!

B1 Bunch intensity losses [02/07/11 00:54:15]

IR1 Luminosity During IR5 Adjustments

IR1 cross. angle at 48 μ rad (~5 σ sep) constant. IR5 cross. angle being reduced.

Equal crossing angle amplitude in IR1/5 best for diffusion! Compensation of LR beam-beam effects in IR1 and IR5...

8/22/2011

IR1 Luminosity During IR5 Adjustments

IR1 cross. angle at 48 μ rad (~5 σ sep) constant. IR5 cross. angle being reduced.

Losses at Collimator: Dynamic Aperture and Core Diffusion

MD Results: Bunch Intensity and Emittance

First 25 ns Injection Test (B. Goddard et al)

228 228

Injection 25ns – Heat Load

Beam screen temperatures (S. Claudet):

- "From operations point of view nothing dramatic has been observed.
- T_{max} arcs only at about 20K, so nothing serious
- For triplets very smooth temperature bump, maxi L1 probably due to ATLAS field down."

MD du 29 juin 2011, injections à 25 ns Températures des Beam screen des 8 secteurs

25 ns – Emittance Blowup

Bunch per Bunch Slice @ T=RED LINE ABOVE

Follow-up for scrubbing need...

Assume 1.2 mm mrad minimum emittance

Optimal performance improvement

Optimal performance improvement

Injection limit on high emittance

Robustness limit from TCDQ

Intensity Limit for Smallish Emittance

Exclude Region with Lower Luminosity

8/22/2011

Room for Improvements

Room for Improvements (LHC only)

Room for Improvements (with injector limit)

Room for Improvements (with injector limit)

- Non-linear dynamics MD's (F. Schmidt, M. Giovannozi, …) show well behaved machine (dynamic aperture not critical, non-linear chromaticity can be well corrected). See appendix.
- Optics MD's (90m, ATS) very successful:
 - Demonstrates efficiency in increasing/reducing beta*.
 - □ Optics errors small and controllable.
 - □ No major problem from non-linearities even for very small beta* (0.3m with ATS) → reduces overhead for squeezing further.
- Beta* can be reduced to 1m (→ Roderik Bruce) with present, "conventional" optics scheme, limited by coll/prot constraints.
- Smaller beta* requires tight collimation settings:
 - □ Machine in a different regime (impedance).
 - \Box If successful, could use it as baseline for 2012.

CERN-ATS-Note-2011-032 MD (LHC)

16 May 2011

Un-squeeze to 90 m

Helmut Burkhardt, Xavier Buffat, Rama Calaga, Sophie Cavalier, Miriam Fitterer, Yngve Levinsen, Alick Macpherson, Ryoichi Miyamoto, Gabriel Müller, Stefano Redaelli, Ralph Steinhagen, Rogelio Tomas, Glenn Vanbavinckhove, Jörg Wenninger

Keywords: optics

Figure 1: Beam 1, 2 intensities, energy and β^* as a function of time during the machine study on the 5 May 2011 showing that 90 m were reached essentially without losses. Some reduction can be seen for beam 1 towards the very end of the MD at 90 m during measurements with strong beam excitation.

R. Assmann

ATS MD (S. Fartoukh et al)

- First ATS MD commissioned optics to high energy.
- Second ATS MD <u>successfully demonstrated the principle</u>:
 - □ beta*: 30 cm was reached at IP1 while
 - beta* IP5 remained to "pre-squeeze beta* of 1.2 m (already below existing collision beta* of 1.5 m).
 - Chromatic aberrations were well under control during the squeeze (non-linear chroma, off-momentum beta-beating).
 - The on-momentum beta-beating was recorded at beta*=4.4 m, 1.2 m, 54 cm and 30 cm.
 - At 30 cm: peak beta-beating error 15% 40%, depending on plane and beam, with correction from empirical trims on Q2.R1, Q2.L5 and Q2.R5 (about 10-13 units), as derived for the nominal squeezed optics.
 - This beta-beating error has to be compared to the 400% design betabeat induced on purpose in sectors 81 and 12 to squeeze beta* by a factor of 4 w.r.t. the pre-squeezed beta* of 1.2 m.
- Note: Pilot intensity → Setup presently not usable for high intensity (collimation & MP issues).

••• ATS: 30 cm β^* in IP1: Measured β_x

Φ ATS: 30 cm β^* in IP1: Measured β_v

ATS: Beta Beat Err (here B2; B1 even better)

ATS: Coupling Error (here B2; B1 even better)

LHC MD Lessons (LHC only)

Conclusions I

- The first 2 LHC MD's worked and made efficient use of beam time, in agreement with LHC priorities. Credits to MD teams, the OP crew and the injectors for the results achieved.
- MD's showed <u>feasibility of WP's with much higher luminosity</u> reach than in design → 8 x design bunch luminosity!?
- The next MD session (this week) aims at lower β* for 50ns (factor 1.5 in luminosity), further exploration of 25ns beams and various other topics.
- We have a <u>full MD list</u> (see appendix) and will continue exploring the LHC accelerator operation and physics.
- Time is tight and we <u>need the allocated 22 days to perform</u> the foreseen program. Start using floating MD's.

- Conclusions II
- Based on the results from the foreseen MD's: Can we achieve 6e33 lumi in 2012? \rightarrow Chamonix & Evian.
- The MD results can also have profound impact on the upgrade plans and directions (Chamonix):
 - Collimation upgrades in IR3 and IR7 less urgent than expected.
 - □ LHC should prepare on the long term for very high brightness beams \rightarrow some new collimators and absorbers, feedbacks, ...?
 - Success of ATS optics can open path to very small β^* . Can we profit from this optics already before the 2020 IR upgrade?
 - Higher than foreseen luminosity means higher losses and earlier radiation damage and activation problems.
 - □ Luminosity leveling more important earlier.
- Ion issues will be addressed in last MD of 2011.

Scheduled & not yet scheduled MD Requests status August 2011

times in hours (incl. possible ramp down) allocated in: 1st MD block 2nd MD block 3rd MD block

beam-beam MD's

MD title	Requester	# MD's	Total time	Total time	Energy	Max Intensity	Theme	OP li	nk
45 degree crossing at	W. Herr and T. Pieloni				3500	physics	LHC		
LHCb (25ns)		2	0	16			nominal	RA, GP	
Beam-Beam Limits	W. Herr and T. Pieloni	5	40	0	450, 3500	5e12	LHC nominal	RA, GP 8 -	⊢17+16
Crossing Scheme	F. Zimmermann, R. Calaga, W. Herr and T. Pieloni	2	0	24	450, 3500	1.7e13	HL-LHC	SR, RA, GP	 ,
Large Piwinski Angle (LPA)	S. Fartoukh, F. Zimmermann	2	8	8	450	3e11	HL-LHC	SR	8
Transverse noise,									
coherent beam-beam									
instability and beam-									
beam emittance growth	W. Herr and T. Pieloni	1	8	0	3500	5e12	nominal	RA, GP	
Operation tune close to half-Integer	R. Calaga, W. Herr, T. Pieloni, R. Steinhagen	2	0	16	450, 3500	1e12	HL-LHC	RA, GP	1
Tune scan for beam-									
beam optimization,	W. Herr, T. Pieloni, R.						LHC		
lifetime and losses	Assmann, R. Steinhagen	2	8	8	450, 3500	6e12	HL-LHC	RA, GP	6 (EOF)

total: 134 h

MD title	Requester	# MD's	Total time 2010 [h]	Total time 2011 [h]	Energy	Max Intensity	Theme	OP link	¢
ATS	S. Fartoukh	6	24	24	450, 3500	1e10	HL-LHC	SR 1	4+14
							Commissioning		
Un-squeeze to 90 m	Helmut Burkhardt	1	8	0	3500	1e10	leftover	SR	_10
Emittance growth. Life-									
time and emittance									
dependence on									
chromaticity at 450 and	R. Steinhagen,								
3.5 TeV	F.Roncarolo, V.Kain, B. Goddard	2	8	0	450, 3500	2e13	LHC nominal	VK	
Non-linear dynamics									
studies: various studies.									
Measurement of single-									12
particle dynamic									12
aperture	Giovannozzi	3	8	16	450, 3500	1e10	LHC nominal	SR	
Collision tunes at									_
injection and ramp	R. Tomas	1	6	0	450	1e10	LHC nominal	SR	8
Single beam parameter									
evolution	G. Papotti	1	4	0	3500	1.15e11	LHC nominal	GP	

R. Assmann

total: 98 h

MD title	Requester	# MD's	Total time 2010 [h]	Total time 2011 [h]	Energy	Max Intensity	Theme (OP link
Intensity								
limitations from electron cloud in	mC prie	ority	/				Commissioning	7
the LHC	G. Arduini	1	36	36	450	3e14	leftover	x

total: 36 h

MD title	Requester	# MD's	Total time 2010 [h]	Total time 2011 [h]	Energy	Max Intensity	Theme (OP link
Combined ramp							Commissioning	
and squeeze	S. Redaelli	2	6	6	450, 3500	1e10	leftover	SR

total: 12 h

MD title	Requester	# MD's	Total time 2010 [h]	Total time 2011 [h]	Energy	Max Intensity	Theme	OP link	
Movements of the									-
inner triplet with							Commissioning		
beam at injection	S. Redaelli	1	0	8	450	1e10	leftover	SR	_
BPM offset									
determination for									8
triplet BPMs	J. Wenninger	2	16	0	450	1.2e11	LHC nominal	x	
Triplet aperture									
measurements at 3.5							Commissioning		10
TeV	S. Redaelli	1	0	8	3500	1e10	leftover	SR	

total: 32 h

injection & injection protection MD's

MD title R	equester	# MD's	Total	Total	Energy	Max	Theme	OP lin	k
			time	time		Intensity			
Beam based alignment issues with long protection devices, injection	Wolfgang Bartmann and Chiara			<u></u>		1.2e11 and	Commissioning		8
TCDQ alignment and TCT transmission during asynchronous	Bracco Wolfgang Bartmann and Chiara	2	8	8	450	1.5e13 pilot beam	Commissioning	VK	
dump Injection studies for different SPS beam parameters	Bracco Brennan		16	0	450	(beam 2) 1.2e13, 144 bunches at	leftover	VK	6+7
Injecting nominal emittance	Lene Drosdal	1	9	0	450	12, 36 bunches	LHC nominal	VK	9
Transverse blow-up, longitudinal blow-up and SPS scraping and iniection losses	Verena Kain	1	8	0	450	1.3e11	LIU	VK	
Detailed injection matching studies	Malika Meddahi	2	6	6	450	1.3e11	LHC nominal	VK	
Beam-Based Measurement of the Waveform of the LHC Injection Kickers	Mike BARNES	1	6	0	450	1e10	Commissioning leftover	x	
MKI UFOs at injection	T. Baeer, J. Uythoven	1	8	0	450	up to 1.5e14	LHC nominal	x	(4+) 10
sensitivity of injection quality & injection protection to TL steering	Verena Kain, Lene Drosdal,	1	12	0	450	1-12 b at 50 ns, at ~1.2e11	LHC nominal	x	
transfer and injection with SPS Q20 optics	Wolfgang Baartmann,	2	16	0	450	1e10-3e11, single to 36, 1-4 batches	LIU	x	

total: 111 h

••••

collimation MD's

MD title	Requester	#	MD's 201	Total time .0 [h] 20	Total time 11 [h]	E	nergy Int	Max Them tensity	e	OP link
Scraping scans for beam shape	Daniel Wollmann, Daniel Deboy, Florian Burkart	1	8	C	45	0, 3500	3e11	LHC nominal + HL- LHC	SR	4
Improving Collimator	Gianluca Valentino									5
Setup Speed at 3.5 TeV		2	8	8		3500	1.2e11	LHC nominal	SR	
Nominal and tighter										10
collimation settings, single bunch tune shift	R. Assmann, B. Salvant, N. Mounet, E. Metral	2	16	C		3500	3e11	LHC nominal + HL- LHC	SR	
Feasibility test beta*=1 m	R. Bruce, R. Assmann	1	mC _s	prior	ity	3500	pilot	LHC nominal	SR	10
Beta* reach from	Roderik Bruce									
collimation		2	8	8		3500	1e12	LHC nominal	SR	
combined cleanup		1	5					LHC nominal	SR	5
BLM quench threshold										
test at 3.5 TeV in the DS										10+10
of IR7	S. Redaelli, R. Assmann	2	16	C		3500	1e13	LHC nominal	SR	

total: 72 h

MD's on passive protection for stored beam

MD title	Requester	# MD's	Total time 2010 [h]	Total time 2011 [h]	Energy	Max Intensity	Theme	OP link
Beam loss								
measurements with								
different collimator								
settings (TCTs, TCLAs,								
), TCDQ/TCSG/TCT								
protection levels and								
tolerance	Adriana Rossi, Chiara Bracco	2	8	8	450	1.5e11	LHC nominal	VK, SR

total: 16 h

MD title	Requester	# MD's	Total time 2010 [h]	Total time 2011 [h]	Energy	Max Intensity	Theme (OP link	
Coupled-bunch instability rise times									
at injection♭ top and stabilization by									10
Landau octupoles, with collimators	N. Mounet, E. Metral, collimation team	3	16	8	3500	6e13	LHC nominal + HL- LHC	SR	
Multi-bunch tune									-
3.5 TeV, with collimators	N. Mounet, E. Metral, collimation team	3	16	8	450, 3500	6e13	LHC nominal + HL- LHC	SR	(5?)

total: 48 h

MD title	Requester	# MD's	Total time 2010 [h]	Total time 2011 [h]	Energy	Max Intensity	Theme	OP link	
Slow controlled									
losses for RadMon									
application									8
benchmark	M. Calviani (EN/STI)	1	8	0	450	1e10	LHC nominal	MP	

total: 8 h

MD title	Requester	# MD's	Total time 2010 [h]	Total time 2011 [h]	Energy	Max Intensity	Theme	OP link	
Optimization of BGI							Commissioning		
parameters	Mariusz Sapinski	4	4	0	450	1e11	leftover	x	
BSR studies at 1.38 TeV	F. Roncarolo	2	2	0	1380	2e13	Commissioning leftover	MP	
Continuous beta-beat									
measurement at									
injection and squeezed									
optic	Ralph Steinhagen	1	0	8	450, 3500	7e12	LHC nominal	x	
Quench Test at 1.38 TeV	Agnieszka Priebe	1	5	0	1380	1.2e11	LHC nominal	x	
Quench test with wire									
scanner	Mariusz Sapinski	1	2	0	3500	1e14	LHC nominal	x	
Cross calibration of						. 1 - 1 0 9		1	0
BSRT/WS/BGI	F. Roncarolo	2	2	0	450, 3500	<pre>>1010 & <2e13</pre>	LHC nominal	MP	
High bunch intensity	F. Roncarolo	1	8		450, 3500		LHC nominal	1	
direct-dump BLM									
calibration, new BPM									
firmware, stripline									
crosstalk, BCT/FBCT,						1-24			
BSRT. BSRA, Schottky,						bunches,			
emittance vs Q'	F. Roncarolo	1	8		4,503,500	0.5e10 to 1.3e11	LHC nominal	x	

_{8/22/2011}1: 31 h

MD title	Requester	# MD's	Total time 2010 [h]	Total time 2011 [h]	Energy	Max Intensity	Theme	OP link	
PE poiso induced beam							LHC nominal +		
	Е.		0	0			Commissioning	5	
diffusion	Shaposhnikova	4	8	8	450, 3500	1e12	leftover	GP	_
Synchronous phase shift	E. Shaposhnikova	4	8	8	450	1e13	Commissioning leftover	g GP	
Longitudinal beam stability	E. Shaposhnikova	3	8	4	450, 3500	1e12	LHC nominal	GP	<mark>8+10</mark>
long bunch length	E. Shaposhnikova	1	8	0	450, 3500	1e12	LHC nominal	GP	<u>10</u>
RF feedback optimization							Commissioning	ξ	
with circulating beam	P. Baudrenghien	4	8	8	450, 3500	1e12	leftover	x	
Longitudinal damper							Commissioning	Ţ	_
commissioning	P. Baudrenghien	2	8	0	450	5e12	leftover	x	
Voltage									_
(capture/ramp/Physics)							Commissioning	Ţ	
and Blow-Up Optimization	P. Baudrenghien	3	12	6	450, 3500	1.3e13	leftover	GP	
1-T feedback				ti			Commissioning		_
commissioning	P. Baudrenghien	U	s ope	er a lig	450, 3500	everc _{6e13}	prient	x	
							Commissioning	5	^
Rephasing	P. Baudrenghien	3	8	4	3500	5e12	leftover	GP	_ U
Controlled transverse	R. Schmidt, W.						Commissioning	ŗ	6
blowup	Redaellie	1	6	0	450	safe beam	leftover	SR	Ŭ

total: 124 h

MD title	Requester	# MD's	Total time 2010 [h]	Total time 2011 [h]	Energy	Max Intensity	Theme	OP link
Feasibility of p-Pb operation	John Jowett	ng	t rea	idy?	450	p, ion	LHC ions	x
Wire Breakage with				-				
ion beam	Mariusz Sapinski	1	2	0	450 <i>,</i> 3500	50 nom ion b	LHC ions	x

MD title	Requester	# MD's	Total time 2010 [h]	Total time 2011 [h]	Energy	Max Intensity	Theme	OP link	
maximum pile up in single bunches	Physics coordinators		C prio	ority ₀	3500	2 bunches with ~2e11	LHC nominal	x	6
25-ns test run with physics	Physics coordinators	in I	MD k	lock	4? 3500	a few trains with 25-ns spacing	LHC nominal	x	_

MD title	Requester	# MD's	5 Total time 2010 [h]	Total time 2011 [h]	Energy	Max Intensity	Theme	OP link	
Investigation on CODs	Nuria	-	8	0	450	1e11	LHC nominal		6
RQ6.L8 quench limit investigation	Chiara Bracco, Rudiger Schmidt, Matteo Solfaroli		. 8	0	450	1e10, 2e10, 3e10	LHC nominal		
quench margin at injection	Rudieger Schmidt, Brennan Goddard, Mariusz Sapinski	2	2 8	0	450	3e9-1.2e11	LHC nominal		6+4
Q' decay vs powering		n	ot in	MD		probe			
Ποτοιγ	Ezio Todesco		1 11	- 0	450, 3500	bunch, 1e10	LHC nominal		

MD title	Requester	# MD's	Total	Total	Energy	Max	Theme	OP link
			time	time		Intensity		
			2010 [11]	2011 [[]]				
Transverse noise,								
coherent beam-beam								
instability and beam-								
beam emittance								
growth	W. Herr and T. Pieloni	4 EOF	4		3500	5e12	LHC nominal	RA, GP
TCP alignment test								
for different orbit								
settings	S. Redaelli	3 EOF	6		3500	4e13	LHC nominal	SR
	Daniel Wollmann, Daniel Deboy, Elorian							
Halo scraping	Burkart	16 EOF	8		450, 3500	physics	LHC nominal	SR
Debunched beam							LHC nominal +	
following klystron trip	P Baudrenghien	4 FOF	8		3500	nhysics	Commissioning leftover	GP
Emittance from lumi	i budurenginen					pirysies		
scan (eof, many)	G. Papotti	0	0		3500	physics	LHC nominal	GP
Tight collimator								
settings for beta*=1								
m at high intensity	S. Redaelli	1	2		3500	physics	LHC nominal	

operational development studies

MD title	Requester	# MD's	Total time 2010 [h]	Total time 2011 [h]	Energy	Max Intensity	Theme	OP link
beta*=1 m w/o								
beam	M. Lamont?	1	4		3500	no beam	LHC nominal	SR
beta*=1 m with								
beam	M. Lamont?, R. Tomas?	1	8		3500	pilot	LHC nominal	SR
SPS Q20 extraction to								
downstream TED								
(w/o LHC)	W. Bartmann, H. Bartosik	1	8		450		LIU	VK?

K-Modulation

- MD was successful (Jorg, Kajetan, Tobias)
 - $\hfill\square$ lot's of good data was collected.
 - \Box about 3 1/2 hours of efficient MD time.
- We took data for four quadrupoles:
 Q6.L5B2, Q6.L7B2, Q9.R6B, QX1.L5
- Preliminary analysis was done for Q6.L5B2 and Q9.R6B2 vertical:
 - For Q6.L5B2 we found a very good alignment of the BPM with the quadrupole, while we found that the beam was off-center by -0.2mm, as indicated by the BPM.
 - The preliminary analysis for Q9.R6B2 indicates an offset between quadrupole and BPM of 0.2mm, while the beam was really off-center by about 1.5 mm!

K-Modulation Result

8/22/2011

ATS/Note/2011/040 (MD)

2011-05-18

chiara.bracco@cern.ch

TI8 shielding studies and angular alignment of TDI and TCDQ

Wolfgang Bartmann, Vittorio Boccone, Chiara Bracco, Brennan Goddard, Verena Kain, Annika Nordt.

Keywords: hardware calibration and setup

Figure 3 Angular alignment of the B1 TDI. The parabolic fit for the right jaw has to be taken with caution - an additional measurement should be taken at -1.5 mrad

TCDQ angle alignment and TI8 shielding MD

- TI8 shielding studies (Chiara, Wolfgang, Annika):
 - □ B2, use probe bunch, opened all TCDIs to +/-15 mm
 - for one after the other close left jaw to 3 sig across zero to dump beam on this jaw
 - □ 3 shots per collimator, analysis to check shielding effect offline
 - □ Completed successfully.
- TCDQ angle alignment (Chiara, Wolfgang)
 - □ B1, use probe bunch
 - TCDQ maximum angle corresponding to 2mm discrepancy between up and downstream corner ==> 300 urad
 - measure angle of TCDQ
 - Stopped by problem with an SPS kicker. Not complete. B2 to be done.

ATS/Note/2011/031-MD

2011-05-17

Philippe.Baudrenghien@cern.ch

Longitudinal Oscillations with Batch Injection in the LHC

T. Argyropoulos, <u>P. Baudrenghien</u>, T. Mastoridis, J.E. Muller, E. Shaposhnikova, J. Tuckmantel, D. Valuch / BE-RF

G. Papotti / BE-OP

C. Bhat / BE-ABP

 $Keywords:\ LHC\ , RF\ , instability, longitudinal, injection, multi-bunch, bunch\ train$

RF multi-bunch instabilities (Philippe et al)

- Studied VERY slowly damped oscillations of bunches at injection. 3 different fillings, all nominal bunch parameters.
- Varied batch spacing and the nbr bunches per batch.
 - □ Fill1: 12b, then 36b at 0.875 us spacing, then 36b at 0.875us
 - □ Fill2: 12b, then 36b at 0.875 us spacing, then 36b at ½ turn spacing
 - \square Fill3: 12b, then 36b at 0.875 us spacing, then 72b at 0.875 us

Measured:

- bunch profiles (25 ps/sample) to see whether oscillation is pure dipole or higher-order and the b-by-b stable phase to measure damping.
- Plot shows damping of the dipole oscillation for fill3
- The figure is similar for the other fills: an oscillation growing for the first 5-10 min, then damped with a 30-40 min damping time.
- Further analysis will tell whether batch spacing and nbr bunches/batch have an influence on the damping time. The BQM data will also be analyzed to see whether quadrupole oscillations are present.

RF multi-bunch instabilities (Philippe et al)

damping of the dipole oscillation for fill3:

12b batch (avg over all bunches) in green

36b batch (avg) in red

72 b batch (avg) in blue.

Studies of longitudinal single bunch stability

T. Argyropoulos, T. Bohl, C. Bhat, P. Baudrenghien, J. Esteban Muller, W. Hofle, G. Papotti, E. Shaposhnikova, J. Tuckmantel, D. Valuch, W. Venturini Delsolaro, U. Wehrle (BE) Keywords: Beam dynamics, Longitudinal, Instability, RF, LHC

Figure 4: Energy at which the phase oscillations start to grow during the ramp (2nd MD fill) as a function of bunch length at the end of the flat bottom for all 8 bunches in Beam1 (top) and Beam2 (bottom).

8/22/2011

RF Single-bunch instabilities MD (Elena et al)

- Loosen limits on interlocked BPMS IP6 and test
- Inject beams with different longitudinal emittances, expect some of them to go unstable during the ramp
- 1.6e11 ppb, .35eVs single bunches are stable in the LHC at injection energy.
- Ramp to 3.5 TeV

"Bunches became unstable on the flat top with phase oscillation amplitude increasing for bunches with smaller injected longitudinal emittance. Beam 2 was more unstable than beam 1. Only the first bunch with injected emittance of 0.9 eVs was stable. To see instability during the ramp (if any) bunch profile data should be analysed."

Unstable at flat top after a while

CERN-ATS-Note-2011-034 MD (LHC)

May 23, 2011 Rogelio.Tomás@cern.ch

Collision tunes at injection and ramp

Rama Calaga, Delphine Jacquet, Elias Metral, Ryoichi Miyamoto, Nicolas Mounet, Laurette Ponce, Stefano Redaelli, Benoit Salvant, Frank Schmidt, Ralph Steinhagen, Rogelio Tomás, Glenn Vanbavinckhove, Frank Zimmermann

Keywords: optics

8/22/2011

Collision tunes at injection

- Local coupling corrections implemented.
- Nominal tunes ramp for further coupling measurement and correction along the ramp with pilot bunch. Fine.
- Tune scan from nominal to collision tunes at injection. No effect on lifetime. Ramped with collision tunes.
- A second ramp: coupling corrections from ramp 1.
 Improvement of about factor 2 observed in C-. Coupling correction is valid for nominal injection tunes too.
- 3rd ramp nominal bunch, lost half intensity at start of the ramp: chromaticity could be negative. Vertical oscillations 1 minute after start of ramp. Transverse dampers were off.
- No difference in beta-beat for collision and injection tunes.
- Small difference observed in the beta-beat for injection compared with 4-4-2011 (for both beams).

Coupling correction & Tune Scan

8/22/2011

Tune Amplitude: Beam Loss Ramp #3

0.45 TeV: Investigation on CODs

Investigation done on the following CODS:

Nuria, Matteo, et al

- 1 RCBYHS5.R8B1
- □ 2 RCBYV5.L4B2
- □ 3 RCBYH4.R8B1
- □ 4 RCBYHS4.L5B1
- □ 5 RCBCV8.L1B2

Procedure:

- □ Bump with each of the correctors observing leakage to machine.
- Data acquired at 25Hz has to be analyzed online, but some hints suggested good results (especially the corrector 2 showed a large dynamic response).
- Further analysis has been done on correctors 1 and 5 sending a sinusoidal current at different frequency.
- Results to be analyzed. Ongoing.

0.45 TeV: Investigation on CODs

Nuria, Matteo, et al

8/22/2011

Nominal collimation, single b tune shift (Coll, Imp.)

- Initial blow-up tests with transverse damper.
- Injection scraping during short delay from injectors.
- Nominal 3.5 TeV collimation settings achieved for b1 &b2:
 - \Box TCP = 5.7 sigma (nom), TCSG = 6.7 sigma (nom)
 - □ TCLA = 9.7 sigma (nom), IP6 = 7.2/7.7 sigma (nom)
- Octupoles trimmed to 350A for beam 1.
- For b1 moved towards nominal 7 TeV settings. Limited by TCSG losses close to IP7. Valid setup reached:
 - □ TCP = 4.0 sigma (nom), TCSG = 6.0 sigma (nom)
 - □ TCLA = 8.0 sigma (nom), IP6 = 7.0/7.5 sigma (nom)

Smallest gap:	2.2 mm
Beam lifetime:	> 100 hours
Tune shift measured:	~2e-4
Efficiency measured:	3e-5 – 1e-4

Blowup Test Transv. Damper (Wolfgang, Daniel)

8/22/2011

Settings b1 first loss-maps

file View C	-	vinstiss IIsla	'	/LC media player				
	itte tier tier tier tier tier tier tier	vigation <u>H</u> elp						
LHC Collim	ators Beam: B1 Set	: HW Group	LHC COLL	IMATORS			07-05-201	1 23:11:0
L(mm) MDC	IP1 PR	S R(mm)	4.3	TCLA.7R3.B1	-4.43	2.2	TCSG.D5R7.B1	-2.78
24.87	TCL5R1.B1	-25.13		IP5		2.44	TCSG.E5R7.B1	-2.54
10.25	TCTH.4L1.B1	-9.92	7.19	TCTH.4L5.B1	-13.02	3.07	TCSG.6R7.B1	-3.62
8.73	TCTVA.4L1.B1	-5.46	7.28	TCTVA.4L5.B1	-6.97	1.97	TCLA.A6R7.B1	-1.38
	IP2		24.87	TCL5R5.B1	-25.15	2.72	TCLA.B6R7.B1	-3.44
4.69	TCTH.4L2.B1	-6.25		IP6		4.26	TCLA.C6R7.B1	-1.79
20.02	TDI.4L2	-20.07	6.16	TCDQA.A4R6.B1		1.85	TCLA.D6R7.B1	-2.1
4.64	TCTVB.4L2	-6.88	5.58	TCSG.4R6.B1	-4.2	1.74	TCLA.A7R7.B1	-2.1
0.71	TCDD.4L2	-0.7		IP7			IP8	
24.96	TCLIA.4R2	-25	1.45	TCP.D6L7.B1	-0.72	8.9	TCTH.4L8.B1	-2.04
24.86	TCLIB.6R2.B1	-24.98	1.03	TCP.C6L7.B1	-2.01	5.34	TCTVB.4L8	-6.2
(<u>400</u>	IP3	<u></u>	0.63	TCP.B6L7.B1	-1.94		TI2	
4.12	TCP.6L3.B1	-4.32	1.62	TCSG.A6L7.B1	-2.32	1.42	TCDIV.20607	-2
2.74	TCSG.5L3.B1	-4.34	1.9	TCSG.B5L7.B1	-2.74	2.66	TCDIV.29012	-1.74
1.29	TCSG.4R3.B1	-3.62	2.24	TCSG.A5L7.B1	-2.51	3.76	TCDIH.29050	-3.28
2.74	TCSG.A5R3.B1	-3.55	1.6	TCSG.D4L7.B1	-1.48	2.4	TCDIH.29205	-2.06
3	TCSG.B5R3.B1	-4.14	3.17	TCSG.B4L7.B1	-1.18	3.37	TCDIV.29234	-2.22
6.64	TCLA.A5R3.B1	-7.64	2.99	TCSG.A4L7.B1	-1.26	2.96	TCDIH.29465	-2.32
6.22	TCLA.B5R3.B1	-7	2.96	TCSG.A4R7.B1	-1.32	9	TCDIV.29509	-2.9
6.17	TCLA.6R3.B1	-6.1	2.74	TCSG.B5R7.B1	-2.22			
0:00:00 / 0:00	x1.00 "LHC Collimators B1							

file Yiew (Settings Audio Video	Navigation Help		VLC media player				- 0 ×
≜ II II	ators Beam: B2 1	💷 🍕 📰 Set: HW Group	LHC COLL	IMATORS			07-05-201	1 23:11:12
L(mm) MD	c IP1	PRS R(mm)	10.34	TCTH.4R5.B2	-9.88	3.02	TCSG.B5R7.B2	-2.21
8.2	TCTVA.4R1.B2	-6.04		IP6		2.04	TCSG.A6R7.B2	-2.36
9.25	TCTH.4R1.82	-10.92	4.96	TCSG.4L6.B2	-5.14	1.15	TCP.86R7.82	-2.44
25.31	TCL.5L1.B2	-24.68	6.06	TCDQA.A4L6.B2		1.86	TCP.C6R7.B2	-2.4
	IP2			IP7		2.2	TCP.D6R7.B2	-0.88
3.74	TCTVB.4R2	-7.77	3.05	TCLA.A7L7.B2	-1.91		IP8	
4.85	TCTH.4R2.B2	-6.1	2.6	TCLA.D6L7.B2	-2.2	24.92	TCLIB.6L8.B2	-24.98
	IP3		4.39	TCLA.C6L7.B2	-2.91	25.02	TCLIA.4L8	-25.01
4.42	TCLA.7L3.B2	-4.43	3.84	TCLA.B6L7.B2	-3.66	6.29	TCTVB.4R8	-5.24
5.63	TCLA.6L3.82	-6.6	2.3	TCLA.A6L7.B2	-1.84	20	TDI.4R8	-20
5.31	TCLA.B5L3.B2	-7.96	3.96	TCSG.6L7.B2	-3.59	0.7	TCTH.4R8.B2	-10.25
7.36	TCLA.A5L3.B2	-6.93	3.12	TCSG.E5L7.B2	-2.36		T18	
3.08	TCSG.B5L3.B2	-4	2.57	TCSG.D5L7.B2	-2.92	1.08	TCDIH.87441	-2.05
2.54	TCSG.A5L3.B2	-3.78	3.6	TCSG.B5L7.B2	-1.86	6.54	TCDIV.87645	0.24
2.09	TCSG.4L3.82	-2.75	1.66	TCSG.A4L7.B2	-3.11	6.02	TCDIV.87804	1.9
3.46	TCSG.5R3.B2	-3.55	1.98	TCSG.A4R7.B2	-2.88	1.54	TCDIH.87904	-2.18
4.58	TCP.6R3.B2	-3.84	1.76	TCSG.B4R7.B2	-3.3	2.64	TCDIH.88121	-3.74
	IP5		1.4	TCSG.D 4R7.B2	-2	7.31	TCDIV.88123	-3.8
24.55	TCL5L5.B2	-25.44	3.3	TCSG.A5R7.B2	-2.02			
	TOTAL ADD DO							

- Clearly seen in vertical plane when moving collimtors out by 4 sigma and back in, etc...
- Magnitude: ~0.0003

Efficiency measured – here b1, horizontal

Coupled-bunch instability rise times (Elias et al)

Injection energy, 12+36 bunches:

- switch off transverse feedback (both planes) for up to 2.5 s, triggering acquisition at the same time on ADT pickups, LHC-BPM and headtail monitor, first for B2 only (up to ~14h00), then for both beams
- B2: instability visible in the ADT pickups, in vertical only, around 13h18 (Q'H=-1, Q'V=-0.5, feedback off for 1 sec),
- B1 & B2, both planes: instability visible in ADT pickups and LHC-BPM around 14h46 (chromaticities at 0, feedback off for 2.5sec) and around 15h04 (chromaticities at -1, feedback off for 1.5sec)

Ramp 12+36 b to flat top, no squeeze, chromaticities ~ 0

- trim octupoles to 300A, then trim down by step. At each step, we switched off the transverse damper for 1 second. No instability until 100A, then "feedback off" window increased to 3s.
- Octupoles trimmed down again by steps of 10A. Instability begin visible in B2 vertical at 60A (17h54). We continued to trim down until 0A; no other instability than B2 V was seen, until we dump around 18h23.

R. Assmann

Coupled-bunch instability rise times (Elias et al)

8/22/2011

R. Assmann

- BLM thresholds adjusted on 120 BLM's, based on old data.
- Created fast (~2 s) beam losses at primary collimators.
- 3 bunches, b2 loss
 - □ Loss rate: 1.5e11 p/s
 - □ 20 times below BLM limits, 10 times below assumed quench limit,
- 16 bunches, b2 loss
 - □ Loss rate b2: 2.5 3e11 p/s, 6e11 p/s
 - Reached 505 kW loss
 - $\hfill\square$ Beam dump after damper switched on, b2 still on 1/3 resonance.
- 16b (b1) and 21b (b2):

CERN-ATS-Note-2011-042 MD (LHC)

May 24,2011 Stefano.Redaelli@cern.ch

Collimator losses in the DS of IR7 and quench test at 3.5 TeV

R.W. Assmann, R. Bruce, F. Burkart, M. Cauchi, D. Deboy, B. Dehning,E.B. Holzer, E. Nebot del Busto, A. Priebe, S. Redaelli, A. Rossi, R. Schmidt,M. Sapinski, G. Valentino, J. Wenninger, D. Wollmann, M. Zerlauth,CERN, Geneva, Switzerland

Keywords: Collimation, beam losses, quench, dispersion suppressor

Beam Loss with 16 bunches, 3.5 TeV

Loss rate:

9e11 p/s @ 3.5 TeV

 \rightarrow

Cryo observation: 505 kW beam loss

Time Range ▼ YAxes ▼ Save Other ▼ 1:1 log vauto	Close
2.026	
2,020	36 mK in Q11 empty cryostat,
2.015	cooling down within 10s
2000 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	Available margin:
84	~ 205 mK cryo start lost
28	~ 215 mK cryo condition lost
2000	
	4
E, 1 1 1 1 2 40:00 AM 5/9/2011 12:50:00 AM 5/9/2011 1:00:00 AM 5/	9/2011 1:10:00 AM 5/9/2011 1:20:00 AM 5/9/2011 1:30:00 AM 5/9/2011 1

R. Assmann

Beam Instrumentation F. Roncarollo et al, BI Team

8/22/2011

Beam Instrumentation F. Roncarollo et al, BI Team

BI: Comparison Fast BCT and DC BCT

Disagreement below 1%...

Injecting nominal emittances V. Kain et al

Longitudinal OK:

□ no significant degradation of injection quality (12 or 36 bunch injections).

- Transverse checks OK:
 - Inj. emittances of ~ 3.5 um with comparable losses to 2.5 um on TCDIs and nom. scraping (int. loss in SPS due to scraping 10 %).
 - Injected emittances up to 7.5 um and varying scraping with expected unacceptable losses for physics filling.
 - □ The TCDIs were kept at nominal settings throughout the test.

MKI & UFO's J. Uythoven et al

- Data taken for selective pulsing of injection kickers.
- Some initial correlation with UFO's that later disappeared.
- To be followed...

- Goal: compare thresholds for single and multi-bunch stability.
- Only time to do single bunch studies:
 - Single bunches injected to LHC with nominal (0.5 eVs) and smaller longitudinal emittances extracted from the SPS (down to 0.35 eVs).
 - Intensities were about 1.2-1.4e11 ppb, SPS transverse scraping was disabled for the second part of the MD.
 - Injection phase errors were damped for nominal emittances, but remained undamped for smaller emittances (even slightly growing).
 - The capture voltage changed to 8 MV and 3.5 MV (operational: 6 MV), for different fills (3.5 MV is matched to SPS extraction voltage).
 - □ The <u>bunches injected in the 3.5 MV were observed to have a longer</u> <u>damping time of the dipole oscillations</u>.
 - One ramp was performed with 8 bunches per ring: <u>observed different</u> <u>energy onset of instabilities for bunches with slightly different long.</u> <u>emittances.</u> Data acquired and will be analysed in detail.

Tune WP Close to Half Integer (B1 shown)

No more **Beam 1** as from 10 am due to BTEs problem at the SPS: MCD scan dropped (problem solved after end of MD). Additional time will be requested.

New alignment of collimators in IR3 for b1 and b2.

- □ Centers of collimators within 100 µm from previous values, but for TCSG.5L3.B1 (230 µm difference) → Excellent news!
- In parallel, tested new automatic collimation setup.
- Setup combined H betatron cleaning in IR3 for B2:
 - □ IR3 collimators moved to 5.7 (TCP),6.7 (TCSG),10 sigma (TCLA).
 - □ IR7 H and skew opened. IR7 V collimators left at relaxed settings.
- Test of system with B2 horizontal loss map
 - Note that also TCTV in IR1 and IR8 were above dump thresholds (cleaning inefficiency ~ 1to 2%).
 - □ Cleaning inefficiency downstream IR3 (cold regions) 5e-4
 - $\hfill\square$ To be compared with simulations.

Collimator Settings B2: H Cleaning in IR3

8/22/2011

Loss Map Combined H Betatron Cleaning

Transverse Beam Distribution F. Burkart et al

450 GeV: H, V, skew scraping to determine 2D bunch distribution

Scraping: Sound at Microphone D. Deboy et al

Quench Margin at Injection C. Bracco et al

No quench, even with 2e10 p per bunch 10 times above BLM threshold To be analyzed

22:03:36 - Warning on: BLMQI.06L8.BIE20_MQML, integration time: 40 us, losses = 6.800170E-01, threshold = 1.745383E00, ratio = 39% 22:03:36 - Warning on: BLMQI.06L8.BIE20_MQML, integration time: 80 us, losses = 5.887478E-01, threshold = 1.527233E00, ratio = 39% 22:03:36 - Alarm on: BLMQI.06L8.B2I10_MQML, integration time: 40 us, losses = 2.360168E01, threshold = 2.316800E00, ratio = 1019% 22:03:36 - Alarm on: BLMQI.06L8.B2I10_MQML, integration time: 80 us, losses = 1.778379E01, threshold = 2.316800E00, ratio = 768% 22:03:36 - Alarm on: BLMQI.06L8.B2I10_MQML, integration time: 320 us, losses = 1.778379E01, threshold = 2.316800E00, ratio = 768% 22:03:36 - Alarm on: BLMQI.06L8.B2I10_MQML, integration time: 320 us, losses = 6.307431E00, threshold = 2.316800E00, ratio = 272% 22:03:36 - Alarm on: BLMQI.06L8.B2I10_MQML, integration time: 640 us, losses = 3.162166E00, threshold = 2.316800E00, ratio = 136% 22:03:36 - Warning on: BLMQI.06L8.B2I10_MQML, integration time: 2560 us, losses = 3.162166E00, threshold = 2.316800E00, ratio = 136% 22:03:36 - Warning on: BLMQI.06L8.B2I10_MQML, integration time: 2560 us, losses = 1.989893E-01, threshold = 1.066401E00, ratio = 74%

 Data collected for better predictions of radiation to electronics effects.