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Who we are

• Georg Viehhauser 
• Mostly hardware-focussed career 

• DELPHI Forward Chamber A 

• NA48 LKr calorimeter

• ATLAS muon chambers 

• CLEO III RICH

• Since 2001 ATLAS SCT and ATLAS Itk

• More recently ePIC SVT 

• DRD deputy spokesperson

• Main research interest: Support structures and thermal management of semiconductor tracking systems

• Tony Weidberg 
• Detector experiences: 

• CCD readout for a scintillating fibre detector at the CERN SPS ҧ𝑝𝑝 collider

• Played a major role in the founding of the ATLAS experiment and the design of the ATLAS SCT 

• Wide range of experience from detector R&D, assembly and integration of complex detector systems as well as 
evaluating their performance

• Extensive experience in radiation hardness studies, particularly for optoelectronics and applications of reliability 
theory

• We both are academics at the University of Oxford and have a long experience in teaching 
undergraduate and graduate students there.
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What we set out to do

• Write a textbook targeted at grad student level 
• Including exercises

• An “updated Kleinknecht”
• Around 200 pages

• Final: 318 pages text
• An additional 22 pages of references – this was one of the goals during writing, give starting points 

and then point the reader into the direction of the deeper reading
• Because of the limited length we decided to omit otherwise interesting topics, like medical or 

safeguarding applications, and focus on detectors directly used in particle physics – hence the title 

• Bridge the gap of simple, approximative “folklore” equations, which are widely used for 
quick estimates and the detailed, often very complex, physics that is made use of in 
simulation software
• We wanted to show the reader where things are coming from
• Researchers using simulation codes should get an idea of what the code they are using is built on

• Tony and I have many years experience in undergraduate teaching, and our experience is 
that students are quite capable of complex derivations
• They just don’t expect them in detector physics
• We therefore didn’t shy from including some more challenging derivations, in particular in the 

starting chapters 3



What emerged during the writing

• Several narratives
• Starting from the dielectric models (PAI), we could introduce straggling, and  

Cherenkov and transition radiation in a coherent arc (building on an approach 
developed by Wade Allison) 

• Discussion of detection based on moving charges, non-moving charges and excitation 
(even if the length of these discussions differ as they are of different importance)

• Discussion of detection based on charges in gases, liquids and solids are treated at 
chapter levels equally (again length of discussion differs)

• By developing these narratives we hope that we were able to avoid 
throwing many different unconnected chunks at the reader

• One of our aspirations was to introduce the reader to onerous but 
necessary tasks associated with operation of real detectors, like alignment, 
calibration or data-driven measurements of detector performance
• Also, the annoying practical issues associated with noise and radiation damage 

• Another goal was to clean up the inconsistent notations and units used in 
our field
• Motivated by our teaching experience 4



Chapter 1 Introduction

• Setting the context

• What is it we want to measure in particle physics? 

• What particles can we observe directly in detectors?

• Introduce the stage: quick overview of experiments in particle 
physics
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Chapter 2 Interactions of particles with matter 

• Start with interaction of photons with matter and electromagnetic fields in matter 
• Important in themselves but also in preparation of dielectric models

• Charged particle energy loss 
• Start with Bethe theory, but then sketch out dielectric theory (PAI model) in some detail
• This allows us then to develop a narrative for straggling, and for Cherenkov and 

transition radiation 

• Multiple scattering 
• Sketch the basics of Molière theory – mostly to familiarize the reader with the concept, 

and to introduce the complexity of the problem

• Interactions of electrons with matter 
• Semi-classical derivation of a simplified expression of the radiation length using the 

Weizsäcker-Williams model (also in problems)

• Hadronic interactions and Interaction of neutrinos

• Key exercises
• Calculation of photo-electric cross section, showing that s ~ E-7/2

• Justification and use of Weizsäcker-Williams approximation to calculate radiation length
• Derivation of Bethe equation using NRQM



Chapter 3 Electronic signals and noise

• Electrical signal generation with a derivation of Ramo-Shockley 
theorem
• Essential for understanding signals from detectors! Used widely in book

• Derivation of noise sources: thermal and shot noise
• Practical discussion of interference noise and how to minimise it
• Very simple discussion of amplifiers

• Use this to understand pulse shaping and optimising SNR

• Introduction into digitization 
• Radiation effects on electronics
• Key exercises

• Explanation why cascode is used in FE
• Calculation of optimal shaping for unirradiated and radiated detectors
• Calculation of noise from bias resistor, explains why we need large values for 

this resistor



Chapter 4 Movement of charges and internal amplification

• Treatment of charge movement in E and B fields

• Drift in gases, liquids and semiconductors

• Internal amplification and avalanche multiplication
• PMTs

• Principles of design for high quantum efficiency

• Key exercises
• Understanding solution to Langevin equation

• Walks reader through calculation of the distribution of avalanche sizes



Chapter 5 Response to excitation

• Introduction to scintillators: organic and inorganic
• Need for wavelength shifters

• Scintillating fibres

• Scintillation in liquid noble gases

• Introduction to radiation damage in scintillators and mitigation

• For clarification: Comparison of scintillation and Cherenkov 
radiation 

• Exercises
• Calculation of typical signals from a scintillating fibre



Chapter 6 Detection of ionisation without charge movement 

• Even if this is maybe of less relevance today we included this 
short section for completeness
• Some historical interest

• Might also be entertaining for colleagues who know already 
everything about mainstream detectors

• Emulsions (arguably still very relevant today) 

• Cloud and bubble chambers
• Even these have some applications nowadays

• Key exercises
• Conditions for bubble growth
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Chapter 7 Gaseous detectors

• Start with discussion of choice of gases

• Discussion of signal generation in wire chambers 
• Role and development of ion drift

• Introduction to different techniques
• Tried to not get bogged down in the myriads of technologies, but cover the main concepts

• Resistive Plate Chambers
• Wire Chambers

• Multi-Wire Proportional chambers and their limitations
• Thin gap chambers

• MPGD: Micromegas and Gas Electron Multiplier (GEM)
• Drift Chambers

• Photon detection in gaseous detectors

• Introduction to ageing in gas detectors

• Simulation of gas detectors
• Introduction to software available

• Key exercises
• Understanding stability of wires in an MWPC
• Walks reader through calculation of time response from a proportional chamber
• Factors affecting position resolution for drift chambers



Chapter 8 Liquid detectors 

• Charge readout 
• Lack of stable avalanche multiplication

• Photon detection 

• Complementarity of signals in combined readout

• Purity of liquid detection media

• Key Exercises
• Understanding energy loss in liquid

• Dual-phase TPC
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Chapter 9 Semiconductor detectors

• Principle of operation and fabrication

• Silicon strip detectors
• Calibration of silicon strip detectors
• Leakage current and thermal management of silicon detectors

• Pixel detectors

• Photon detection with semiconductors and silicon detector applications with 
internal gain 

• Monolithic active pixel sensors 

• Radiation damage in semiconductor detectors 

• 3D sensors 

• Other semiconductors

• Key exercises
• Basic properties of pn junctions
• Pulse shapes and resolution in strip detectors
• Leakage current and shot noise. 
• Temperatures and thermal stability
• Photodiodes 13



Chapter 10 Tracking 

• Track reconstruction

• 4D Tracking 

• Alignment 

• Momentum measurement in magnetic fields 

• Spectrometer magnets 

• Vertex reconstruction and measurement

• Key exercises
• Momentum and impact parameter measurements in different 

geometries
• Effects of multiple scattering
• Determining efficiencies
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Chapter 11 Calorimetry 

• Gamma spectroscopy sub-Kelvin cryogenic detectors
• Mostly to introduce statistical energy measurement

• Electromagnetic cascades 
• Shower development and dimensions 
• Homogeneous calorimeters and resolution 
• Sampling calorimeters and resolution
• Calibration

• Hadronic calorimeters 
• Shower development and dimensions 
• Energy measurement
• Compensation

• Simulation of calorimeters 

• Response to hadronic jets and particle flow

• Calibration of hadronic calorimeters

• Key exercises
• Shower development
• Resolution
• Hadronic interactions
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Chapter 12 Particle identification 

• Time-of-flight, d𝐸/d𝑥, Cherenkov detectors, Transition radiation 
detectors and their combination

• Lepton identification (electrons, muons, taus) 

• Missing 𝐸T

• Neutrino flavour identification 

• Jet tagging

• Key exercises
• Measurement of vertex and reconstruction of Bs

• Muon momentum measurement

• 𝑒/𝜋 separation using a TRT

16



Chapter 13 Triggers 

• Start with basic trigger concepts
• Thresholds, coincidences, efficiency vs purity, timing

• Complex triggers
• Multi-level triggering and as example triggers at LHC 

• Triggers for rare decay experiments

• Key exercises
• Coincidence triggers

• Trigger purity

• Calculation of dead time versus trigger rate, readout time and buffer 
depth
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Chapter 14 Detector systems and applications 

• Discuss with examples issues of integration, service management (in 
particular powering), reliability, and demonstrate how the 
technologies introduced in the previous chapters can be combined to 
create a particle physics experiment

• Different contexts
• Collider detectors 

• Neutrino experiments 

• Particle detectors for rare events 

• Particle detectors in space 

• Key exercises
• Magnetic field geometry and muon triggers

• Powering
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What we got wrong

• We added exercises to the different chapters during the writing

• In the rush to publish we never got around to work out the solutions 
to these problems 

• Started to do this only after publication
• At that point we realised that the problems in the book are riddled with 

mistakes…

• We have now complete solutions to the exercises with fixed problem 
sets
• The fixed problem sets will be available on the author’s book web site  

(https://ppdetectors.web.ox.ac.uk/)
• Solutions will be given to teachers on request

• We have also found a (moderate) number of typos in the main text
• Errata for these are also on the web site
• Any further error reports are much appreciated
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Final thoughts

• We hope you and your students will enjoy 
this book

• We certainly have learned a lot during the 
writing

• We can wholeheartedly recommend the 
online version of this book due to its 
unbeatable value for money
• Thanks to CERN it is available as open access:

• But maybe you prefer the paper copy, which 
will make us even happier 
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