$Obj(\theta) = a_1^{(1)}\cos\theta + a_0^{(2)}\sin\theta$

The Kink

Step 1: Solution from the Bootstrap

150

100

5

-0.5

-1.0

Im Abs

Step 2: Particle Swarm Optimization

$$v_{n+1}^{(i)} = \omega v_n^{(i)} + c_n^{(i)}$$
$$\Theta_{n+1}^{(i)} = \Theta_n^{(i)} + v_n^{(i)}$$

 Z_2

The Best-Fit

Check against 2-loops χPT

 $\blacktriangleright s/m_{\pi}^2$

Tree Level 1-Loop 2-Loops Bootstrap

	Bootstrap Fit	Literature
$a_0^{(2)}$	$(-0.432 \pm 0.001) \times 10^{-1}$	$(-0.444 \pm 0.012) \times 10^{-1}$
$a_{1}^{(1)}$	$(0.380 \pm 0.002) \times 10^{-1}$	$(0.379 \pm 0.05) \times 10^{-1}$
$b_{0}^{(0)}$	0.265 ± 0.030	0.276 ± 0.006
$b_0^{(2)}$	$(-0.797 \pm 0.002) \times 10^{-1}$	$(-0.803 \pm 0.012) \times 10^{-1}$
$b_{1}^{(1)}$	$(0.61 \pm 0.02) \times 10^{-2}$	$(0.57 \pm 0.01) \times 10^{-2}$
$a_{2}^{(0)}$	$(0.53 \pm 0.11) \times 10^{-2}$	$(0.175 \pm 0.003) \times 10^{-2}$
$a_{2}^{(2)}$	$(0.51 \pm 0.18) \times 10^{-3}$	$(0.170 \pm 0.013) \times 10^{-3}$
$a_1^{(3)}$	$(1.5 \pm 0.4) imes 10^{-4}$	$(0.56 \pm 0.02) \times 10^{-4}$

Prediction for I=2, J=2

Spectrum for I=0, J=0

Spectrum for I=1, J=1

The Tetraquark

$M \sim 2 GeV$, $\Gamma \sim 600 MeV$

Can we look into $B^+ \to D^- \pi^+ \pi^+$?

The Tetraquark (news)

High energy behaviour

Input

 \star Experimental phase shifts data for S_0, S_2, P, D_0 waves

 \bigstar Inelasticity model for S_0, S_2 , P, D_0 waves

 \star \exists chiral zeros

|★ ∃ resonances $\rho(770)$, $f_0(980)$, $f_0(1370), f_2(1270)$

Overview

Output

Fit for the phase shifts, chiral zeros, resonances positions

Scattering lengths and effective ranges for any isospin and spin $\ell < 2$

 $♠ S_0, S_2, P$ waves for 0 < s < 4compatible with χPT

 $\mathbf{P}_2 \mathbf{P}_2 \mathbf{P}_2$ compatible with experiments

• Dynamical generation of σ , $\rho(1450), \rho_3$ resonances, plus a tetra quark

•
$$\sigma_{\pi^+\pi^-}$$
 and $\sigma_{\pi^-\pi^-}$ cross sections

- 1) Remove Spectrum assumptions and generate the whole spectrum dynamically
- 2) Study complex spin Regge trajectories and understand their non-perturbative pattern
- 3) Include better data from lattice and other experiments
- 4) Study the couples system $\pi\pi \to \pi\pi$, $\pi\pi \to KK$, $KK \to KK$ and fit inelasticity (systematic at the moment)
- 5) Work in synergy with lattice groups and study properties of glueballs

Outlook

