

Revision of the LHC Helium WG Introduction to HL Cryogenics

S. Claudet, CERN_TE-CRG

pour le compte des équipes projets, et en qualité de responsable de la partie cryogénie pour les derniers 10 ans

https://indico.cern.ch/event/1491143/

Content

- Introduction: from HL magnets to P1/P5 cryolines
- Sectorisation (TCC#141, mid 2021)

He release considerations so far (Aut'23)

New insertion regions (Q1 to Q4)

Stronger focussing quadrupoles (Q1-Q2-Q3) with larger beam pipes

Final focussing area, superconducting magnets

CERN

Longer inner triplet continuous cryostat & multiple stand-alones

HiLumi-WP9-Cryogenics, Global scope overview

HL-LHC P1/P5 Cryogenic architecture

Radiation Safety: Waste Management

HL-LHC Cryogenic distribution system (QXL)

Installation strategy in two steps:

- Phase 1: in the underground galleries, independent from LHC machine operation
- Phase 2: in the LHC tunnel, after when the machine dismounting during Long Shutdown 3

QRL Layout Overview

LHC Point 1 and 5 LSS – QRL Dismantling Constraints

HL-LHC Point 1 and 5 LSS – WP9 Reinstallation

Content

- Introduction: from HL magnets to P1/P5 cryolines
- Sectorisation (TCC#141, mid 2021)

He release considerations so far (Aut'23)

S. Claudet - HiLumi WP9-Cryogenics - No QUIG - 16Sept'21 (HL-1CC#141) Sectorisation

- HiLumi magnets/users can be cooled by :
 - Adjacent sectors
 - New Refrigerators which will be installed
- Several considerations :
 - HiLumi baseline is to cool-down both LSS at the same time
 - Due to access constraints during cooldown, at this stage, LSS/sector have to be in same state.
 - Periodic testing configuration shall be covered

Normal operation

If Intervention needed on one LSS, need for double valve for left and right sides (Not in HiLumi baseline)

A follow-up of presentation done at TCC#138_08July'21

Specific meetings held during the summer with project-safety and cryo operation

Expressed need to develop usual cases (nominal, respective CD, repairs)

Considerations independant from decision

- All modes known today with LHC will be possible (Pressure tests, lock-out, cool-down or warm-up, stable operation at 80K, 20K, 4.5K, 3K, 1.9K, IT@20K-LSS/ARC@nominal)
- "only" one refrigerator at P1/P5 does not allow to operate the 2 LSS in a different mode. A different status of LSS can only be considered with at least one connection to an adjacent arc
- OdH and ventilation (dedicated wg to confirm):
 - Early cooling (or powering) of adjacent arc would prevent access/work in LSS
 - Early cooling of LSS could be envisaged while working in adjacent arc(s)

After HL-WP9-Cryo Installation work (LS3):

Some typical cases illustrated (2/4)

For any reason, compatible for peak luminosity below 2e34:

in case ...

Early cool-down of 2 HL-LSS:

Early cool-down of 1 HL-LSS:

	ARC	LSS		Ref.		LSS		ARC
1 anticipated LSS cooling		W > C		W > C		GHe		
I anticipated LSS cooling		vv -> C		VV -> C		No work		
	(locked)					1 (locked)		
Nominal operation of LSS		_		Cold		W -> C		W -> C
	(locked)					(slower LSS	соо	l-down rate
					1			

(sectorisation in QUIG would have allowed to keep working in warm LSS)

Some typical cases illustrated (4/4)

Possible

To be kept in mind: HL refrigerator will need 2-3 months maintenance as well (independant from the proposed simplification)

HL-LSS cold stand-by, arcs warm (LS?): ARC LSS Ref. LSS ARC Cold stand-by of LSS Cold <td

(and if later 1 LSS has to be warmed-up, 2nd will follow as 1 Ref. = 1 mode)

Intervention on 1 HL-LSS:

	ARC	LSS	Ref.	LSS	ARC
Nominal operation			Cold		
LSS warm-up for intervention			 C -> W	C -> W	
			(C/W)		
ISS warm up for intervention			Warm	Warm	
LSS warm-up for intervention			(locked)	(free)	

(No need for QUIG for that, the 1+2 valves in QURCG could do the job)

Content

- Introduction: from HL magnets to P1/P5 cryolines
- Sectorisation (TCC#141, mid 2021)

He release considerations so far (Aut'23)

HL-WP9-Cryo He release studies, Aut'23

Typical cases considered:

- A. Helium circuits (protection against over-pressure)
- B. Helium pipe breach (into insulation vacuum)
- C. MCI or any case
 (due to powering energy)
 => Sizing of safety devices
 => Propose access conditions

CASE A - helium circuit overpressure – Preliminary flow and inventory

	Liquid inventory [kg]	SV design case	SV SP [barg]	SV flow [g/s]	BD design case	BD SP [barg]	BD flow [g/s]	Reference		
DFX	~60	2x Static load	1.8	10 g/s	LIV	2.2	550 g/s	EDMS 2365987		
DFM	~50	2x Static load	1.8	10 g/s	LIV	2.2	500 g/s	Private communication		
СС	~20	2.5 x Static load	0.75	5 g/s	Beam vacuum loss	1.1	3510 g/s	EDMS 1900654		
JM line C QXL	<0.05	LIV	20	<10 g/s	NA	NA	NA	TBA		
RM QXL	~15 (TBC)	LIV	4	270 g/s (<i>TBC</i>)	NA	NA	NA	TBA		
(limited inventory, failure open outlet process valve)										

HL-WP9-Cryo He release studies, Aut'23

(approach proposed to HL-PSO, well aligned with LHC current practice)

Different accesses cases with potential helium release to tunnel environment										
Case	А	E	3	С						
Volume to be protected	Helium	Insulation vacuum	Insulation vacuum	Insulation vacuum	Insulation vacuum					
Operating cases	Nominal conditions	First Cooldown	Other Cooldown / Nominal conditions	Powering > 1.1 kA (powering level TBC)	Powering < 1.1 kA (powering level TBC)					
Access	Access	NO ACCESS	Access	NO ACCESS	Access					
Failure modes	LIV 2 x Static HL	Any line full rupture	Line partial rupture	Electrical arc leading to line full rupture + Quench	Limited electrical arc (partial rupture)					
System	DFX DFM CCs RM QXL JM QXL	QXL line C IT CM interco D2 CC DFM DFX	All	IT line M or N D2 DFX DFM CC?	IT D2 DFX DFM CC?					
Goal Sizing of the protecting device		Sizing of the Define the protecting device and stagging		Sizing of the protecting device	Define the release location and stagging					
HILUNI (CERN)	Refer to talk of S.Claudet during last meeting for cases A, B, C definition r HL tunnel 8									

HL-WP9-Cryo He release studies, Aut'23

(approach proposed for possible stagging of safety devices)

CERN

Complements

DSL dismantling / re-installation

- **One new splice box** required : Mechanical design of splice box in collaboration with TE-MSC-LMF.
- Store the superconducting link in the tunnel during LS3 : require a DSL protection and tooling to rotate the DSL.
- **Translate DSL** to final location and reconnection.

New infrastructure required and built (surface-shaft cavern-galleries)

Configuration in case of access

IP1 ZONE

Many relief plates to be expected:

- Q1 to DFX and QXL "T" below ULx3-x7 cores
- D2/DFM to Q4

Configuration in case of access

IP5 ZONE

Many relief plates to be expected:

- Q1 to DFX and QXL "T" below ULx3-x7 cores
- D2/DFM to Q4

25