An Eikonal Approach for Inelastic pp/p(bar)p Collisions

P.C. Beggio

Universidade Estadual do Norte Fluminense – UENF

Collaboration: *E.G.S. Luna*

Universidade Federal do Rio Grande do Sul – UFRGS

 $b \rightarrow$ impact parameter

(distance between the two collinding centers)

Proton / antiproton \rightarrow treated as spatially extended objects and the the impact parameter formalism is used.

This approach alows description of experimental data (from elastic and inelastic channels) if the eikonal function is given.

(total and elastic differential cross sections, multiplicity distribution, inelasticity...)

PHYSICAL PICTURE

quark 1 quatk2 quark 3

gluon

b

antiproton

antiquark antiquark 2

antiquar

 \rightarrow may be constructed by summing contributions coming from *pp* collisions taking place at fixed impact parameter *b* $P_n(s) = f(b)$

$$
P_n(s) = \frac{\sigma_n(s)}{\sigma_n(s)} = \frac{\int_0^\infty Gin(s,b) \left[\frac{\sigma_n(s,b)}{\sigma_n(s,b)} \right] b db}{\int_0^\infty Gin(s,b) b db}
$$

\n
$$
\Rightarrow \text{(is) decomposed into contributions for } \frac{\sigma_n(s,b)}{\sigma_n(s,b)}.
$$

 $\sigma_{n}(s)$ \rightarrow (is) decomposed into contributions from each *b*

> $Gin(b) \rightarrow INELASTIC OVERLAP FUNCTION$ (weight function)

 $Gin(s, b) = 1 - e^{-2\chi_I(s, b)}$ *Gin* is related with the Eikonal by \rightarrow $(x,b) = \chi_R(s,b) \pm i\chi_I(s,b)$ *pp* $\chi_{pp}^{pp}(s,b) = \chi_R(s,b) \pm i \chi_{p}^{p}$

Assumed: G_{12} , G_{13} , G_{14} (s, b) σ

- $\int d^2b \frac{G_{in}(s,b)}{\sigma_{i}(s,b)} \frac{\sigma_{n}(s,b)}{\sigma_{i}(s,b)}$ $=$ $(s) = \frac{1}{\sqrt{a^2}}$ d^2b $P_n(s)$ *n* \triangleright quantity in brackets \rightarrow obey KNO scaling;
- $\langle n(s,b)\rangle \rightarrow$ average multiplicity at *b* (and \sqrt{s})

 \int $\left| \frac{d^2b}{ds^2} \frac{\sigma_{in}(s,b)}{\sigma(s,b)} \right| \leq n(s,b) \geq \frac{\sigma_n(s,b)}{\sigma(s,b)}$ \rfloor $\overline{}$ $\overline{}$ \lfloor \mathbf{r} $\langle n(s,b)\rangle$ $\langle n(s,b)\rangle$ \equiv (s,b) (s, b) (s, b) (s, b) (s, b) (s, b) $(s) = \frac{1}{\sqrt{a^2 + 4a^2}}$ 2 d^2bG _{in} (s,b) *s b s b* $n(s,b)$ $n(s,b)$ $G_{in}(s,b)$ d^2b $P_n(s)$ *in in* $\left| \ln \left(\frac{\partial}{\partial y} \right) \right|$ / $\left| \ln \left(\frac{\partial}{\partial y} \right) \right|$ / $\left| \frac{\partial}{\partial y} \right|$ *n* σ σ

in

 $\overline{\int}$

2

($n(s,b)$ • multiplicity distribution (for each *b*) is introduced : $\frac{\Psi(\frac{n}{})}{\leq n(s,b)>}$

 (s,b) (s, b) $) \equiv < n(s, b)$ (s,b) *s b s b* $n(s,b)$ *n in n* σ $=*n*(s,b)> \frac{\sigma}{\sigma}$

 \mathbf{r} $\overline{\mathsf{L}}$

 $\overline{d^{\,2}bG_{_{in}}(s,b)}$

 σ_{in} (*S*,*D*) σ_{n}

in

 $\overline{(s,b)}$

 σ

in

 $\overline{}$

 $G_{in}(s,b) \mid \sigma_n(s,b)$

 $(s,b) \left[\sigma_n(s,b) \right]$

 \perp

 \rfloor

 $\overline{}$

)

 $\overline{(s, b)}$

s b

 $\overline{\mathcal{L}}$

- factorizes as : *<n(s,b)>=<N(s)>.f(s,b);*
- \int $\left|\frac{d^2b}{d^2}\frac{G_{in}(s,b)}{G(N(s)g(f(s),b))}\right|\Psi(\frac{h}{G(N(s)g(f(s),b))})$ $\overline{}$ \lfloor \mathbf{r} $\langle N(s) \rangle$ Ψ $\langle N(s) \rangle$ $=$ (s, b) $(s) > f(s, b)$ ($(s) > f(s, b)$ (s, b) $(s) = \frac{1}{\sqrt{a^2 + 4a^2}}$ 2 $d^2bG_{in}(s,b)$ $N(s) > f(s,b)$ *n* $N(s) > f(s,b)$ $G_{in}(s,b)$ d^2b $P_n(s)$ *in n* • <N(s)> → average multiplicity at \sqrt{s} ;
- $f(s,b) \rightarrow$ multiplicity function;

$$
\langle N(s) \rangle P_n(s) = \frac{\int d^2 b \frac{G_{in}(s,b)}{f(s,b)} \left[\Psi(\frac{z}{f(s,b)}) \right]}{\int d^2 b G_{in}(s,b)} \qquad z = \frac{n}{\langle N(s) \rangle}
$$
\n"Master Equation"

$$
\langle N(s) \rangle P_n(s) = \frac{\int d^2 b \frac{G_{in}(s,b)}{f(s,b)} \left[\Psi(\frac{z}{f(s,b)}) \right]}{\int d^2 b G_{in}(s,b)}
$$

"Master Equation"

from the Master Equation we can construct two models:

Simple One String Model: \rightarrow we are assuming that just one string is created

Talk \rightarrow SOSM

Multiplicity distributions; Inelasticity;

Fused String Model

 \rightarrow in each parton-parton collision a string is created; \rightarrow Multistring formation.

$$
Gin(s,b)=1-e^{-2\chi_I(s,b)}=\sum_{i=1}^{\infty}\frac{\left[2\chi_I(s,b)\right]^i}{i!}e^{-2\chi_I(s,b)}\equiv\sum_{i=1}^{\infty}G^{(i)}(s,b)
$$

Simple One String Model:
\nMaster Equation :
$$
\langle N(s) \rangle P_n(s) = \Phi(s, z) = \frac{\int d^2b \frac{G_n(s, b)}{f(s, b)} \left[\Psi(\frac{z}{f(s, b)}) \right]}{\int d^2b G_n(s, b)} \frac{f(s, b)}{f(s, b)} = \langle N(s) \rangle f(s, b) \rangle^{2A}}{f(s, b) = \frac{\int d^2b \frac{[1 - e^{-2\chi(s, b)}]}{\xi(s)[\chi_I(s, b)]^{2A}} \left[\Psi(\frac{z}{\xi(s)[\chi_I(s, b)]^{2A}} \right]}{\int d^2b[1 - e^{-2\chi_I(s, b)}]} \frac{f(s, b)}{f(s, b)} \frac{f(s, b
$$

Eq. (2) \rightarrow Physical motivation: Eikonal \rightarrow may be interpreted as an overlap, of two colliding matter distributions

 \rightarrow S. Barshay, Phys. Rev. Lett. 49 (1982) 380.

 $E_{\text{eff}} \rightarrow$ is the energy deposited at *b* for particle production

INPUTS and RESULTS:
\n
$$
\left\{\n\begin{array}{c}\n\mathbf{A} & \mathbf{B} \\
\hline\n\mathbf{C} & \mathbf{A} \\
\hline\n\mathbf{D} & \mathbf{A} \\
$$

INPUTS: We have adopted...

 $p\overline{p}(s, b) = \chi_{R(s,b)} + i\chi_I(s,b)$ $\chi_{\scriptsize{pp}}^{\scriptsize{\ \rm p\overline{\rm p}}}(s,b)=\chi_{\scriptsize{R(s,b)}}+i\chi_{\scriptsize{I}}(s,b)\ \ \text{\emph{--}}$ from work of Block et al.

$$
\chi_{pp}^{p\overline{p}}(s,b) = \chi_{qq}(s,b) + \chi_{qg}(s,b) + \chi_{gg}(s,b) \pm \chi^-(s,b)
$$

 $[z]^{k-1}e^{-k[z]} \rightarrow$ $\overline{\overline{\Gamma}}$ $\Psi(z) = 2 \frac{k^k}{\sum_{k=1}^{k-1} z^k} [z]^{k-1} e^{-k[z]}$ *k* $z \int_0^{k-1} e$ *k k* $z = 2 \frac{k^{k}}{\sum (l)^{k}} [z]^{k-1}$ $\overline{(k)}$ $\mathcal{L}(z) = 2 \frac{k^k}{\Gamma(k)} \big[z\right]^{k-1} e^{-k\{z\}} \rightarrow \quad k = 10.8 \quad \rightarrow \text{ gg contribution dominates}$ at high energies

$$
A = 0.258 \rightarrow \langle n(s,b) \rangle = \gamma.(E_{\text{eff}})^A
$$

$$
\int_{0}^{\infty} \Phi_{(s,z)} \cdot z \cdot dz = 2 \to \xi(s) = \frac{\int d^2b[1 - e^{-2\chi_I(s,b)}]}{\int d^2b[1 - e^{-2\chi_I(s,b)}][\chi_I(s,b)]^{2A}}
$$

RESULTS....

obtained from normalization condition on MD

RESULTS \rightarrow Multiplicity Distributions: 52,6, 200, 546 and 900 GeV

11

 1 546 GeV Model $0,1$ $\begin{pmatrix} \overline{c_1} \\ \overline{c_2} \\ \overline{\Theta} \end{pmatrix}$ 0,01 $1E-3$ $1E-4$ $\overline{\circ}$ $\frac{1}{2}$ $\frac{1}{3}$ $\frac{1}{4}$ $\mathbf{1}$ \boldsymbol{z}

p(bar)p Collider CERN

pp-ISR - CERN

The curves shows excellent agreement with data

p(bar)p Collider CERN :

The curves agree with data for $z > 1$

Agreement with data seems reasonable

At LHC energies \rightarrow 2360 and 7000 GeV

the results suggest that *K* increases

as the collision energy also increases

Final Remarks

 \triangleright SOSM \rightarrow able to describe MD in interval 52.6 – 900 GeV

 \rightarrow without free parameters

- \triangleright Inelasticity related with the Eikonal
- \triangleright Same behavior of inelasticity at 546 and 900 GeV

 \rightarrow may have implications for the gluon-gluon dynamics

 \rightarrow Dynamical gluon mass Eikonal Model

THANKS A LOT

$$
\Psi(z) = 2 \frac{k^k}{\Gamma(k)} \big[z\big]^{k-1} e^{-k[z]} \longrightarrow
$$

Gamma dist. is know to arise as limiting form for the parton number variable, when the dynamical theory (as in QCD case) allows each existing parton to act as a source to emit additional partons (parton branching)

Obtive: Inelasticidade dependente da FÇ. EICONAL

