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b  impact parameter  

 
     (distance between the two collinding centers) 

p

)( pp

Proton / antiproton         treated  as spatially extended objects and the 

                            the impact parameter formalism is used. 

This approach alows description of experimental data (from elastic and inelastic     

                                        channels) if the eikonal function is given.  

 

(total and elastic differential cross sections, multiplicity distribution, inelasticity...) 
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  topological cross section ( Cross section of  n-particle production)  

  Inelastic cross section 3 

Multiplicity Distribution   -  or    - 

 Probabilities  of n-particle production       Pn 
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-    BASIC FORMALISM    - 

                    may be constructed by summing    

 contributions coming from pp collisions 

  taking place at fixed impact parameter b 
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PHYSICAL PICTURE 

)(sn   (is) decomposed into contributions from each b 

           

Gin(b)  INELASTIC OVERLAP FUNCTION             

                  (weight  function)    
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•   multiplicity distribution (for each b) is introduced : 
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“Master Equation” 

 

  quantity in brackets    obey KNO  scaling; 

 

•      <n(s,b)>  average multiplicity at b (and √s)  

  factorizes as  : <n(s,b)>=<N(s)>.f(s,b);  

 

•  <N(s)>    average multiplicity at √s; 

 

•   f(s,b)   multiplicity function; 
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from  the Master Equation we can construct two models: 

Simple One String Model: 

Talk  SOSM 

 

     Multiplicity distributions;   Inelasticity; 

 

Fused String Model  

 

6 



 










),(

)
),(

(
),(

),(

)()(
2

2

bsbGd

bsf

z

bsf

bsG
bd

sPsN
in

in

n

 
),(

!

),(2
1),(

1

)(),(2

1

),(2
bsGe

i

bs
ebsGin

i

ibs

i

i

Ibs II 












 

“Master Equation” 

 

  in each parton-parton collision a string is created;  

                                  Multistring formation. 

 we are assuming that just one string is created 
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 Eq. (2)  Physical motivation:  Eikonal  may be interpreted as an overlap,  

                              of two colliding matter distributions  

  

 S. Barshay,   Phys. Rev.  Lett. 49 (1982) 380. 

 

Simple One String Model: 
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Master Equation :  

Multiplicity Distribution 

 Equation     SOSM             

Eeff     is the energy deposited at b for particle production  
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INPUTS:  We have adopted... 
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INPUTS and RESULTS : 
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RESULTS.... 

from work of Block et al. 

 

 

 obtained from normalization condition on MD 

   gg contribution dominates 

                      at high energies 



RESULTS Multiplicity Distributions: 52,6, 200, 546 and 900 GeV 
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p(bar)p Collider CERN  
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pp-ISR - CERN   

 

  

 

 

The curves shows excellent agreement with data 
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     Agreement with data seems reasonable 

 

         

   

p(bar)p Collider CERN :     

        

 

          The curves agree with data for z  > 1 
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   defines the energy available for particle production RESULTS  Inelasticity K : 

  (Naturally) K decreases as fuction of  b; 

  In the interval 52 – 900 GeV  K decreases as  

                                              √s  increases;  

  The K behavior is the same at 546 and 900 GeV; 

15 

 Inelasticity is related to the eikonal by    



At  LHC energies   2360 and 7000 GeV 

          the results suggest that K increases  

     as the collision energy also increases 
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Final Remarks 

17 

  SOSM able to describe MD in interval 52.6 – 900 GeV 

 

            without free parameters 

  Inelasticity related with the Eikonal 

    Same behavior of inelasticity at 546 and 900 GeV  

 

                may have implications for the  gluon-gluon   

                               dynamics 

 

   Dynamical gluon mass Eikonal Model 

THANKS  A LOT     
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Gamma dist. is know to arise as limiting form for the parton number 

variable, when the dynamical theory (as in QCD case) allows each 

existing parton to act as a source to emit additional partons (parton 

branching) 
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Obtive: Inelasticidade dependente da FÇ. EICONAL  

PP

bsIs

s
bsK

)(
),(

),()( 


20 



21 


