

Diffraction at HERA, Tevatron and LHC

II Workshop on Diffractive Physics at LHC 21-23 September, 2011, Rio de Janeiro, Brazil Maria Beatriz Gay Ducati

beatriz.gay@ufrgs.br

GFPAE – IF - UFRGS

Outline

- > Review of diffraction
 - ✓ Mandelstam variables
 - ✓ Regge Theory
- ➤ Diffraction at HERA
 - ✓ Deep Inelastic Scattering
 - ✓ Diffractive DIS
 - ✓ Diffractive Structure Functions
- ➤ Diffraction at Tevatron
 - ✓ Diffraction at Tevatron
 - √ Hadronic case
 - ✓ Diffractive Structure Functions
- ➤ Diffraction at LHC
 - √ Higgs case

✓ Pomeron

- ✓ Partonic Structure of the Pomeron
- √ Results

- √ W / Z production
- √ Higgs Production

Review of Diffraction

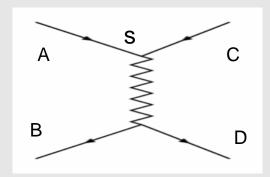
Processes in channels s and t

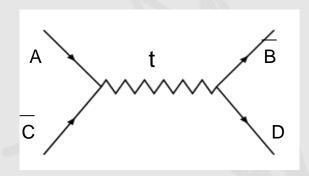
 Two body scattering can be calculated in terms of two independent invariants, s and t, Mandelstam variables

where
$$\begin{cases} s = (A+B)^2 = (C+D)^2 \\ t = (A-C)^2 = (B-D)^2 \end{cases}$$

Square of center-of-mass energy

Square of the transfered four momentum





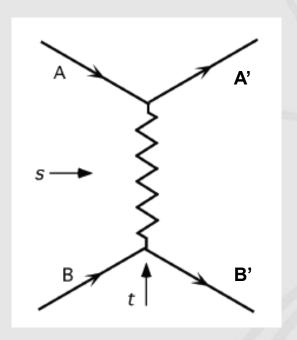
$$A_{AB o CD} ig(s, t ig) = A_{A\overline{C} o \overline{B}D} ig(t, s ig)$$
 by crossing symmetry $A(s,t) pprox rac{g^2}{m_\pi^2 - t}$ pion exchange

g → coupling constant

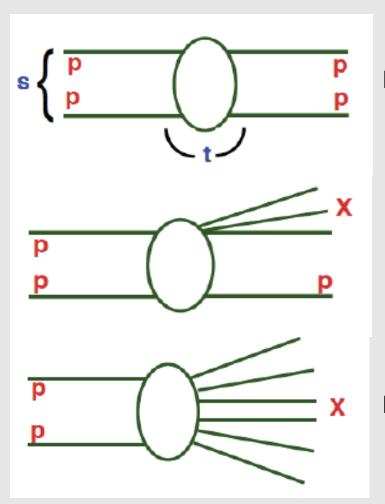
Singularity (pole) in non-physical region t > 0 in s-channel diagram $\implies t = m_{\pi}^2$

What is Diffraction?

- Diffraction is characterized as a colour singlet exchange process in pp physics
- Described in terms of t channel exchanges



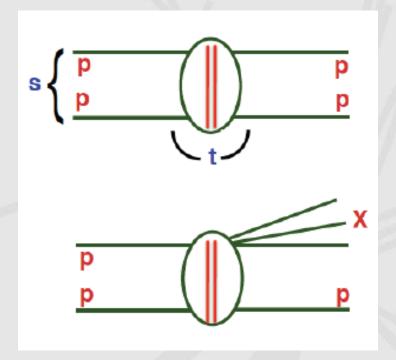
What is exchanged in t channel?



Elastic

SD

DPE



Regge Theory

 \checkmark Ressonances as observables in t channel

meson exchange

✓ t channel trajectory

Ressonances with same quantum numbers

$$\alpha(t) = \alpha(0) + \alpha't$$

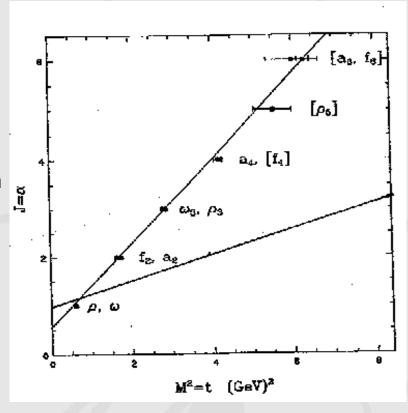
slope

✓ Amplitudes through partial waves decomposition

$$A(s,t) \approx \sum_{t=0}^{\infty} (2l+1)A_l(t)P_l(\cos\theta)$$

$$A_{i}(t)$$
 sum on poles (Reggeons)

$$\frac{d\sigma}{dt} \approx \frac{1}{s^2} |A(s,t)|^2 = g(t) \left(\frac{s}{s_0}\right)^{2\alpha(t)-2}$$



Good for hadron interactions with low momentum transfer $\pi^- p \to \pi^0 n$

Regge Theory

- At fixed t, with s >> t
- Amplitude for a process governed by the exchange of a trajectory $\alpha(t)$ is

$$A(s,t) \sim (s/s_0)^{\alpha(t)}$$

- No prediction for *t* dependence
- Elastic cross section

$$\frac{d\sigma_{el}}{dt} \sim s^{2\alpha(t)-2}$$

• Total cross section considering the optical theorem

Diffractive scattering

Consider elastic $A B \rightarrow A B$

$$\frac{d\sigma_{el}}{dt} \approx \frac{1}{s^2} \sum_{X} \left| \begin{array}{c} A \\ \times \\ B \end{array} \right|^{2} \approx \frac{1}{s^2} \left| \begin{array}{c} A \\ \times \\ B \end{array} \right|^{2} \approx s^{2\alpha(t)-2}$$

optical theorem

$$\sigma_{tot}^{AB} \approx \frac{1}{S} \operatorname{Im} \left(A_{el}^{AB} \right)_{t=0} \approx s^{\alpha(0)-1}$$

$$\sigma_{tot} = \frac{1}{2s} \sum_{X}$$

$$= \frac{1}{2s} \sum_{X}$$

$$= \frac{1}{2s} \sum_{X}$$

$$= \frac{1}{2s} \sum_{X}$$

$$= \frac{1}{s} \sum_{B}$$

$$\approx \frac{1}{s}$$

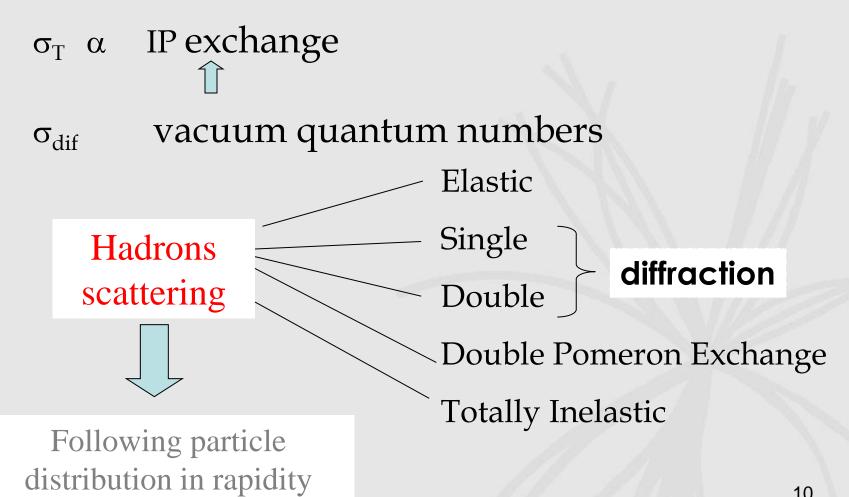
by Regge

 $\alpha(0) \approx 1 + \varepsilon, \quad \alpha(0) \leq 0.5$

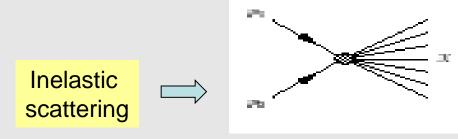
Apparent contradiction

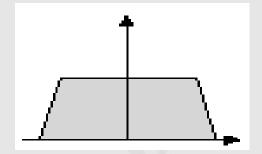
vacuum trajectory
Pomeron α_{IP} (t)
vacuum quantum numbers

Regge theory



Rapidity





Rapidity

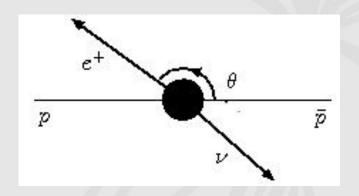
$$y = \frac{1}{2} \ln \frac{E + p_z}{E - p_z} \approx -\ln \tan \frac{\theta}{2} = \eta$$

 $\eta \longrightarrow pseudorapidity$ for a particle with $(E, \vec{p}_{\perp}, p_z)$ and polar angle θ

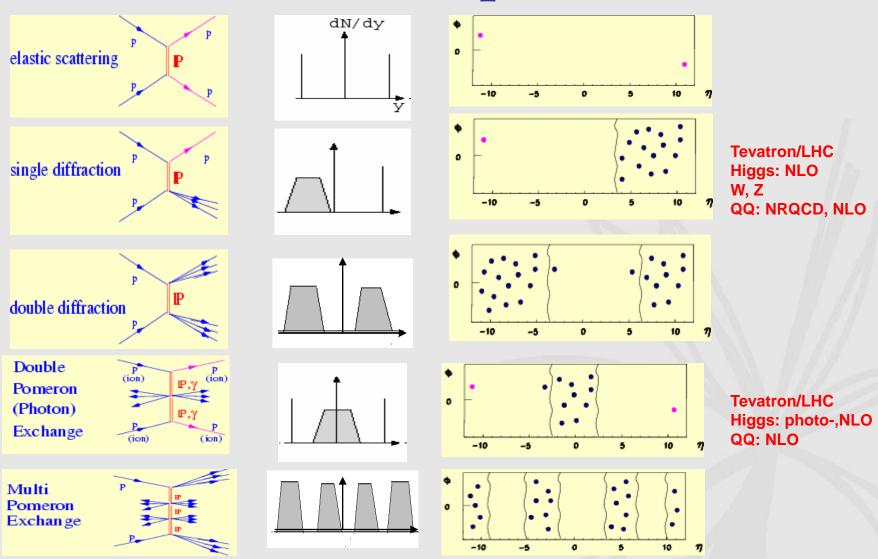
Diffraction defined by



large rapidity gap



Diffractive processes



Regge phenomenology in QCD

$$egin{align} egin{align} egin{align} egin{align} egin{align} eta_{ ext{el}}(t) & \propto \left[i-\operatorname{ctg}rac{\pilpha_{I\!\!P}(t)}{2}
ight]\left(rac{s}{s_0}
ight)^{lpha_{I\!\!P}(t)\;t)} \ lpha_{I\!\!P}(t) & = lpha_{I\!\!P}^0+lpha_{I\!\!P}'t \ \end{pmatrix} \end{array}$$

What is the Pomeron?

- o A Regge pole: not exactly, since $\alpha_{IP}(t)$ varies with Q^2 in DIS
- o DGLAP Pomeron specific ordering for radiated gluon

$$k_{i+1}^2 < k_i^2 \leq Q^2$$
 and $x \leq x_{i+1} \leq x_i$

- o BFKL Pomeron \implies no ordering \implies no evolution in Q^2
- o Other ideas?

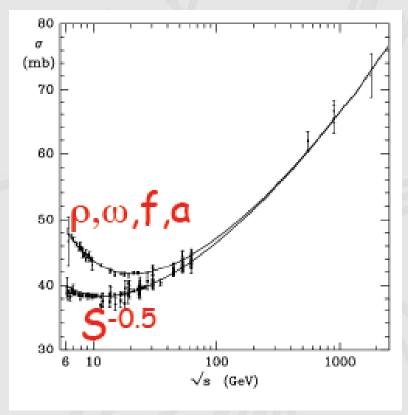
The Pomeron

- * Regge trajectory has intercept which does not exceed 0.5
- * Reggeon exchange leads to total cross sections decreasing with energy
- \diamond Experimentally, hadronic total cross sections as a function of s are rather flat around

$$\sqrt{s} \sim (10-20) \ GeV^2$$

INCREASE AT HIGH ENERGIES

- ❖ Chew and Frautschi (1961) and Gribov (1961) introduced a Regge trajectory with intercept 1 to account for asymptotic total cross sections
- ❖ This reggeon was named Pomeron (IP)



The Pomeron

o From fitting elastic scattering data

IP trajectory is much flatter than others

$$\alpha'_{IP} \approx 0.25 \ GeV^{-2}$$

o For the intercept total cross sections implies

$$\alpha_{IP}(0) \approx 1$$

o Pomeron ——dominant trajectory in the elastic and diffractive processes

o Known to proceed via the exchange of vacuum quantum numbers in the *t*-channel

IP:
$$P = +1$$
; $C = +1$; $I = 0$;

Pomeron trajectory

$$\frac{d\sigma}{dt}(W) = \exp(b_0 t) W^{2[2\alpha_{IP}(t)+2]}$$

$$W^2 = (q+p)^2$$

First measurements in h-h scattering

$$\alpha(t) = \alpha(0) + \alpha' t$$

Soft Pomeron values

$$\alpha$$
 (0) ~ 1.09

$$\alpha$$
 ' ~0.25

 $\checkmark \alpha(0)$ and α' are fundamental parameters to represent the basic features of strong interactions

$$\checkmark \alpha(0)$$

energy dependence of the diffractive cross section

$$\frac{d\sigma}{dt}(W) = W^{4\alpha(0)-4} \exp(bt)$$

$$b = b_0 + 4\alpha' \ln(W)$$

energy dependence of the transverse system

Diffractive scattering

$$\alpha_{IP}(t) = 1.085 + 0.25t$$
 (p p, p \overline{p})

The interactions described by the exchange of a IP are called diffractive

SO

$$\frac{d\sigma_{tot}^{AB}}{dt} \approx \frac{\beta_{AIP}^{2}(t)\beta_{BIP}^{2}(t)}{16\pi} s^{2\alpha_{IP}-2}$$

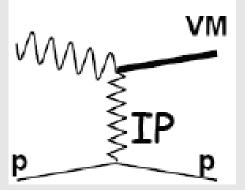
 β_{iIP} \Longrightarrow Pomeron coupling with external particles

Valid for
$$s \to \infty$$
, $t/s \to 0$

High s
$$\sigma_{tot}^{AB} \approx \beta_{AIP}(0)\beta_{BIP}(0)s^{\alpha_{IP}-1}$$

Studies of diffraction

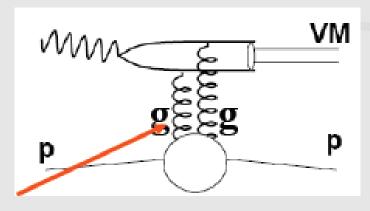
o In the beginning hadron-hadron interactions



SOFT

low momentum transfer

o Exclusive diffractive production: ρ , ϕ , J/ψ , Y, γ



HARD

high momentum transfer

Gluon exchange

Studies of diffraction

o Cross section

$$o(W) \propto W^{\delta}$$

o δ expected to increase from soft (~ 0.2 is a "soft" Pomeron) to hard (~ 0.8 is a "hard" Pomeron)

o Differential cross section

$$\frac{d\sigma}{dt} \propto e^{-b/t/t}$$

o b expected to decrease from soft ($\sim 10 \text{ GeV}^{-2}$) to hard ($\sim 4 - 5 \text{ GeV}^{-2}$)

Froissart limit

- No diffraction within a black disc
- It occurs only at periphery, $b \sim R \implies$ in the Froissart regime, $R \propto \ln(s)$
- Unitarity demands

$$\sigma_{tot} \propto \sigma_{el} \propto \ln^2(s)$$
 $\sigma_{sd} \propto \ln(s)$, i.e. $\sigma_{sd}/\sigma_{tot} \propto 1/\ln(s)$

■ Donnachie-Landshoff approach → may not be distinguishable from logarithmic growth

Any s^{\(\lambda\)} power behaviour would violate unitarity

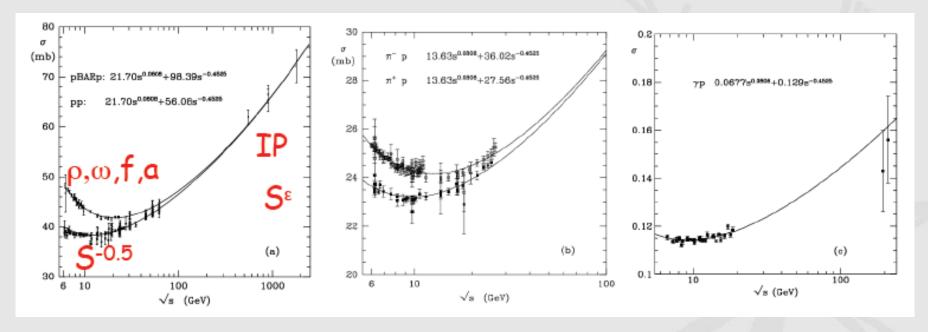
At some point should be modified by unitarity corrections

• Rate of growth $\sim s^{0.08}$ would violate unitarity only at large energies

Some results

- ✓ Many measurements in pp
- ✓ Pomeron exchange trajectory

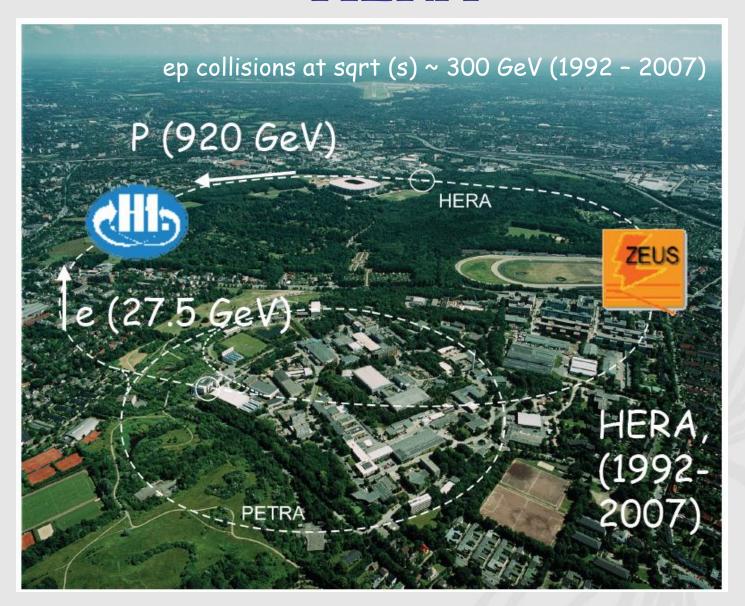
$$\alpha(\dagger) \sim 1.10 + 0.25 \dagger$$



Pomeron universal and factorizable applied to total, elastic, diffractive dissociation cross sections in *ep* collisions

Diffraction at HERA

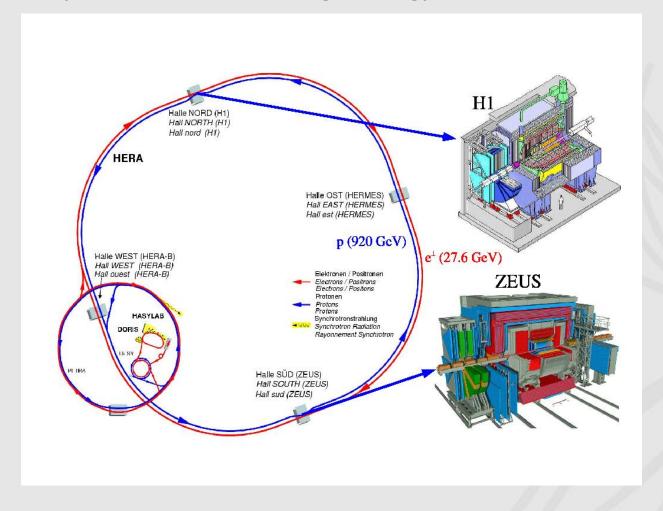
HERA



HERA experiments and diffraction

HERA: ~10% of low-x DIS events are diffractive

→ study QCD structure of high energy diffraction with virtual photon



Deep Inelastic Scattering

• Scattering of a charged (neutral) lepton off a hadron at high momentum transfer

$$x = \frac{Q^2}{2P \cdot q} = \frac{Q^2}{Q^2 + W^2 - m_N^2}$$

Bjorken's x

• Measurement of the energy and scattering angle of the outgoing lepton

(k') e' (k) \mathcal{X} p (P)

Inclusive DIS: Probes partonic structure of the proton (F₂)

k

✓ Electron-proton centre of mass energy

$$s = (k+P)^2 \approx 4E_e E_p$$

✓ Photon virtuality

$$Q^{2} = -q^{2} = -(k - k')^{2} \approx 4E_{e}E_{e}' \sin^{2}\frac{\theta}{2}$$

✓ Photon-proton centre of mass energy

$$W^2 = (q+P)^2$$

✓ Square 4-momentum at the *p* vertex

$$t = (P' - P)^2$$

Deep Inelastic Scattering

• Introducing the hadronic tensor W^{µv}

$$W^{\mu\nu} = \frac{1}{2\pi} \int d^4z e^{iq\cdot z} < N | J^{\mu}(z) J^{\nu}(0) | N >$$

- Spin average absorved in the nucleon state | N>
- The leptonic tensor $L_{\mu\nu}$ defined as (lepton masses neglected)

$$L_{\mu\nu} = 2(l_{\mu}l_{\nu}^{'} + l_{\nu}l_{\mu}^{'} - g_{\mu\nu}l \cdot l')$$

• The differential cross section for DIS takes the form

$$\frac{d\sigma}{dE'd\Omega} = \frac{\alpha_{em}^2}{2m_N Q^4} \frac{E'}{E} L_{\mu\nu} W^{\mu\nu}$$

$$\Omega \equiv (\mathcal{G}, \varphi)$$
 direction of

• It can be expressed in terms of two structure functions W_1 and W_2

$$\operatorname{ind} W_2$$
 the outgoing lepton

$$\frac{d\sigma}{dE'd\Omega} = \frac{4\alpha_{em}^2 E'^2}{Q^4} \left[2W_1 \sin^2 \frac{\vartheta}{2} + W_2 \cos^2 \frac{\vartheta}{2} \right]$$

Solid angle

identifying the

Deep Inelastic Scattering

• Introducing the dimensionless structure functions

$$F_1(x,Q^2) \equiv m_N W_1(v,Q^2)$$

$$v = \frac{W^2 + Q^2 - m_N^2}{2m_N}$$

$$F_2(x,Q^2) \equiv vW_1(v,Q^2)$$

• The hadronic tensor in terms of F_1 and F_2 reads

$$W_{\mu\nu} = 2\left(-g_{\mu\nu} + \frac{q_{\mu}q_{\nu}}{q^{2}}\right)F_{1}(x,Q^{2}) + \frac{2}{(P \cdot q)}\left[\left(P_{\mu} - \frac{P \cdot q}{q^{2}}q_{\mu}\right)\left(P_{\nu} - \frac{P \cdot q}{q^{2}}q_{\nu}\right)\right]F_{2}(x,Q^{2})$$

The differential cross section for DIS takes the form

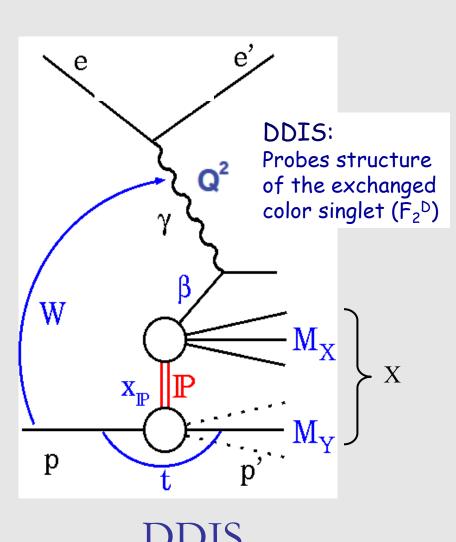
$$\frac{d\sigma}{dxdy} = \frac{4\pi\alpha_{em}^2 s}{Q^4} \left\{ xy^2 F_1(x, Q^2) + \left(1 - y - \frac{xym_N^2}{s}\right) F_2(x, Q^2) \right\}$$

$$F_{T} = 2xF_{1}$$

$$F_{T} = F_{2} - 2xF_{1}$$

$$\sigma^{\gamma^{*}N}(x, Q^{2}) = \frac{4\pi^{2}\alpha_{em}}{Q^{2}}F_{2}(x, Q^{2})$$

Diffractive DIS



✓ Proton escapes in the beam pipe

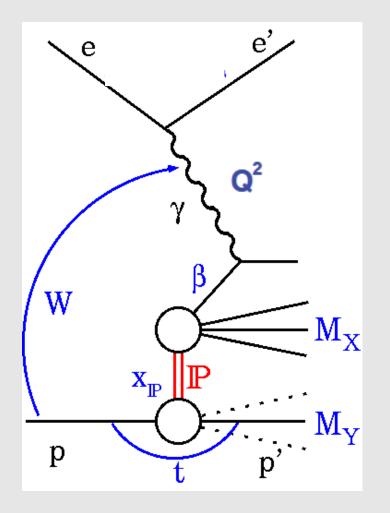
 \checkmark no quantum numbers exchanged between γ^* and p

No colour flux

Large rapidity gap

✓ pQCD motivated description of strong interactions 28

Kinematics of DDIS



- ✓ Described by 5 kinematical variables
- ✓ Two are the same appearing in DIS:
- ➤ Bjorken's x

$$x = \frac{Q^2}{2P \cdot q} = \frac{Q^2}{W^2 + Q^2 - m_N^2} \approx \frac{Q^2}{W^2 + Q^2}$$

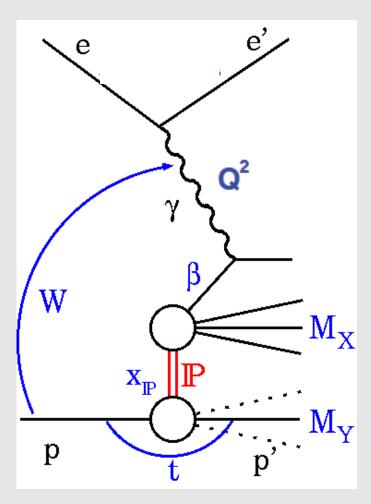
➤ Squared momentum transfer at the lepton vertex

$$Q^2 = -q^2 = -(k - k')^2$$

or

$$y = \frac{P.q}{P.k} \approx \frac{Q^2}{xs}$$

Kinematics of DDIS



✓ New kinematic variables are dependent of the three-momentum P' of the outgoing proton

✓ Invariant quantities

$$t = -(P'-P)^2 \approx -\frac{P'^2_{\perp}}{x_F}$$

$$x_{IP} = \frac{(P - P') \cdot q}{P \cdot q} = \frac{M^2 + Q^2 - t}{W^2 + Q^2 - m_N^2} \approx \frac{M^2 + Q^2}{W^2 + Q^2} = 1 - x_F$$

- ✓ M^2 is the invariant mass of the X system
- ✓ x_F is the Feynman variable

$$x_F \equiv \frac{|p_z^{'}|}{p_z}$$

 $\checkmark \beta$ is the momentum fraction of the parton inside the Pomeron

$$\beta = \frac{Q^2}{2q \cdot (P - P')} = \frac{Q^2}{M^2 + Q^2 - t} \approx \frac{Q^2}{M^2 + Q^2}$$

Diffractive Structure Functions

✓ DDIS differential cross section can be written in terms of two structure functions

$$F_1^{D(4)}$$
 and $F_2^{D(4)}$

- ✓ Dependence of variables \longrightarrow x, Q², x_{IP} , t
- ✓ Introducing the longitudinal and transverse diffractive structure functions

$$F_L^{D(4)} = F_2^{D(4)} - 2xF_1^{D(4)} F_T^{D(4)} = 2xF_1^{D(4)}$$

✓ DDIS cross section is

$$\frac{d\sigma_{\gamma^*p}^{D}}{dxdQ^2dx_{IP}dt} = \frac{4\pi\alpha_{em}^2}{xQ^4} \left\{ 1 - y + \frac{y^2}{2[1 + R^{D(4)}(x, Q^2, x_{IP}, t)]} \right\} F_2^{D(4)}(x, Q^2, x_{IP}, t)$$

 \checkmark $R^{D(4)} = \frac{F_L^{D(4)}}{F_T^{D(4)}}$ is the longitudinal-to-transverse ratio

Diffractive Structure Functions

- ✓ Data are taken predominantly at small *y*
- ✓ Cross section \longrightarrow little sensitivy to $R^{D(4)}$
- ✓ $F_L^{D(4)} \ll F_T^{D(4)}$ for $\beta < 0.8 0.9$ ——neglect $R^{D(4)}$ at this range

$$\frac{d\sigma_{\gamma^*p}^{D}}{dxdQ^2dx_{IP}dt} = \frac{4\pi\alpha_{em}^2}{xQ^4} \left(1 - y + \frac{y^2}{2}\right) F_2^{D(4)}(x, Q^2, x_{IP}, t)$$

 \checkmark $F_2^{D(4)}$ proportional to the cross section for diffractive γ^*p scattering

$$F_2^{D(4)}(x,Q^2,x_{IP},t) = \frac{Q^2}{4\pi\alpha_{em}^2} \frac{d\sigma_{\gamma^*p}^D}{dx_{IP}dt}$$

 $\checkmark F_2^{D(4)}$ dimensional quantity

$$F_2^{D(4)} \equiv \frac{dF_2^D(x, Q^2, x_{IP}, t)}{dx_{IP}dt}$$

 F_2^D is dimensionless

Diffractive Structure Functions

✓ When the outgoing proton is not detected

no measurement of t

 \checkmark Only the cross section integrated over t is obtained

$$\frac{d\sigma_{y^*p}^D}{dxdQ^2dx_{IP}} = \frac{4\pi\alpha_{em}^2}{xQ^4} \left(1 - y + \frac{y^2}{2}\right) F_2^{D(3)}(x, Q^2, x_{IP})$$

✓ The structure function $F_2^{D(4)}$ is defined as

$$F_2^{D(3)}(x,Q^2,x_{IP}) = \int_0^\infty d|t| F_2^{D(4)}(x,Q^2,x_{IP},t)$$

Diffractive Parton Distributions

- ✓ Factorization theorem holds for diffractive structure functions
- ✓ These can be written in terms of the diffractive partons distributions
- ✓ It represents the probability to find a parton in a hadron h, under the condition the h undergoes a diffractive scattering
- ✓ QCD factorization formula for F_2^D is

$$\frac{dF_2^D(x, Q^2, x_{IP}, t)}{dx_{IP}dt} = \sum_{i} \int_{x}^{x_{IP}} d\xi \frac{df_i(\xi, \mu^2, x_{IP}, t)}{dx_{IP}dt} \hat{F}_2^i \left(\frac{x}{\xi}, Q^2, \mu^2\right)$$

- $\checkmark df_i (\xi, \mu^2, x_{IP}, t) / dx_{IP} dt$ is the diffractive distribution of parton *i*
- ✓ Probability to find in a proton a parton of type i carrying momentum fraction ξ
- ✓ Under the requirement that the proton remains intact except for a momentum transfer quantified by x_{IP} and t

Diffractive Parton Distributions

✓ Perturbatively calculable coefficients

$$\stackrel{\wedge}{F}_{2}\left(\frac{x}{\xi},Q^{2},\mu^{2}\right)$$

✓ Factorization scale $\mu^2=M^2$

$$\mu^2=M^2$$

- ✓ Diffractive parton distributions satisfy DGLAP equations
- ✓ Thus

$$\frac{\partial}{\partial \ln \mu^2} \frac{df_i (\xi, \mu^2, x_{IP}, t)}{dx_{IP} dt} = \sum_j \int_{\xi}^1 \frac{d\zeta}{\zeta} P_{ij} \left(\frac{\xi}{\zeta}, \alpha_s(\mu) \right) \frac{df_j (\xi, \mu^2, x_{IP}, t)}{dx_{IP} dt}$$

✓ "fracture function" is a diffractive parton distribution integrated over t

$$\frac{df_i(\xi, \mu^2, x_{IP})}{dx_{IP}} = \int_{\frac{x_{IP}m_N^2}{1-x_{IP}}}^{\infty} d|t| \frac{df_i(\xi, \mu^2, x_{IP}, t)}{dx_{IP}dt}$$

Partonic Structure of the Pomeron

✓ It is quite usual to introduce a partonic structure for F_2^{IP}

✓ At Leading Order → Pomeron Structure Function written as a superposition of quark and antiquark distributions in the Pomeron

$$F_2^{IP}(\beta, Q^2) = \sum_{q,\bar{q}} e_q^2 \beta q^{IP}(\beta, Q^2)$$

 $\checkmark \quad \beta = \frac{x}{x_{IP}} \implies \text{interpreted as the fraction of the Pomeron momentum}$ carried by its partonic constituents

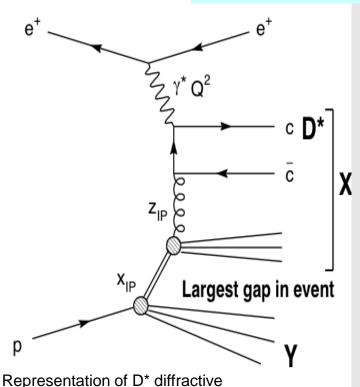
 $\checkmark q^{IP}(\beta, Q^2)$ probability of find a quark q with momentum fraction β inside the Pomeron

✓ This interpretation makes sense only if we can specify unambigously the probability of finding a Pomeron in the proton and assume the Pomeron to be a real particle (INGELMAN-SCHLEIN / 1985)

Partonic Structure of the Pomeron

✓ Diffractive quark distributions and quark distributions of the Pomeron are related

$$\frac{df_{q}(\beta, Q^{2}, x_{IP}, t)}{dx_{IP}dt} = \frac{1}{16\pi^{2}} |g_{IP}(t)|^{2} x_{IP}^{-2\alpha_{IP}(t)} q^{IP}(\beta, Q^{2})$$



production in the infinite-

DDIS

momentum frame description of

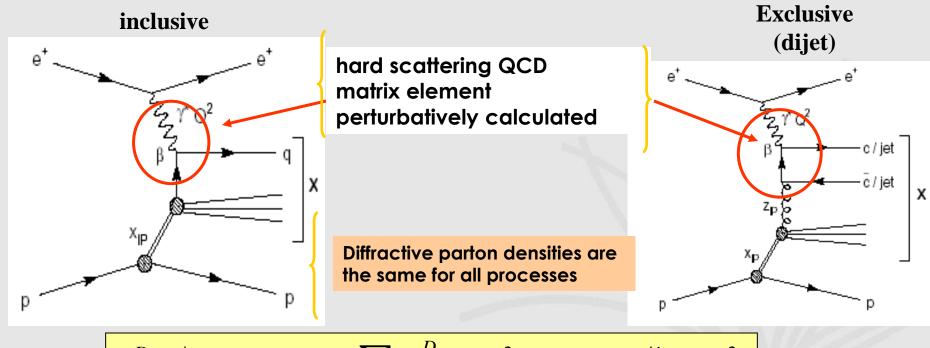
- Introducing gluon distribution in the Pomeron $g^{IP}(\beta,Q^2)$
- Related to $df_g / dx_{IP} dt$ by

$$\frac{df_{g}(\beta, Q^{2}, x_{IP}, t)}{dx_{IP}dt} = \frac{1}{16\pi^{2}} |g_{IP}(t)|^{2} x_{IP}^{-2\alpha_{IP}(t)} g^{IP}(\beta, Q^{2})$$

• At Next-to-Leading order, Pomeron Structure Function acquires a term containing $g^{IP}(\beta,Q^2)$

QCD factorization

PDFs from inclusive diffraction predict cross sections for exclusive diffraction

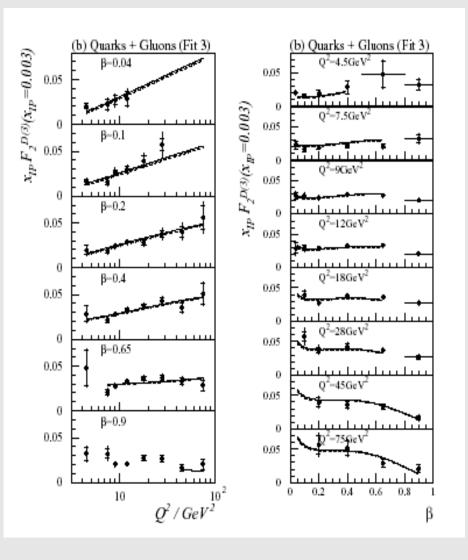


$$\sigma^{D}(\gamma^{*}p \to Xp) = \sum_{parton_i} f_{i}^{D}(x, Q^{2}, x_{IP}, t) \cdot \sigma^{\gamma^{*}i}(x, Q^{2})$$

 σ^{γ^*i} universal hard scattering cross section (same as in inclusive DIS)

diffractive parton distribution functions \rightarrow obey DGLAP universal for diffractive *ep* DIS (inclusive, di-jets, charm)

Analysis of F_2^D (β , Q^2)



✓ Hard partons in IP weak β dependence

✓ QCD evolution weak log Q² dependence

✓ Scattering on point-like charges

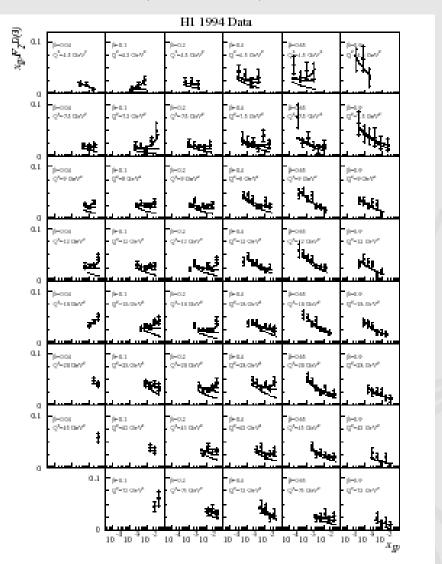
approximate scaling

$$F_2^{IP}(\beta) = F_2^{D(4)} / f_{IP/p} \approx \frac{x}{\beta} F_2^{D(4)}(x)$$

Results from $x_{IP} F_2^{D(3)}$ (1996)

H1 data on the diffractive structure function $F_2^{D(3)}$ (x_P , β , Q^2) with fits based in Regge models with pomeron and reggeon exchange

IP + IR



Results from inclusive diffraction (2002)

$$f_i^D(x,Q^2,x_{IP},t) = f_{IP/p}(x_{IP},t) \cdot f_i^{IP}(\beta = x/x_{IP},Q^2)$$

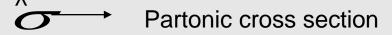
pomeron flux factor

pomeron PDF

$$\sigma^{\text{diff}} = \text{flux}(x_P) \cdot \bigcap \beta, Q^2)$$

$$f_{IP/p}(x_{IP},t) = A_{IP} \frac{e^{B_{IP}t}}{x_{IP}^{2\alpha_{IP}(t)-1}}$$

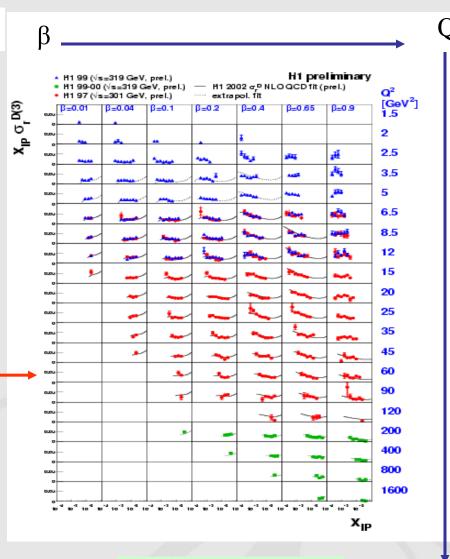
A_{IP} and B_{IP} parameters



Reduced cross section from inclusive diffractive data

$$\sigma_r^{D(3)}(\beta, Q^2, x_{IP}) \approx F_2^{D(3)}$$

get diffractive PDFs from a NLO
 (LO) DGLAP QCD Fit to inclusive
 data from
 6.5 GeV² to 120 GeV²



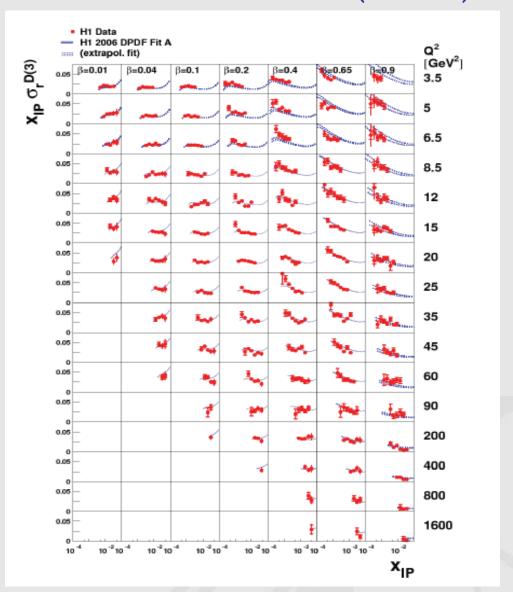
extrapolation of the Fit to lower Q2 to higher Q2

Results from inclusive diffraction (2008)

$$3.5 \le Q^2 \le 1600 \text{ GeV}^2$$

Gives a reasonably good description of inclusive data from 3.5 GeV² –1600 GeV²

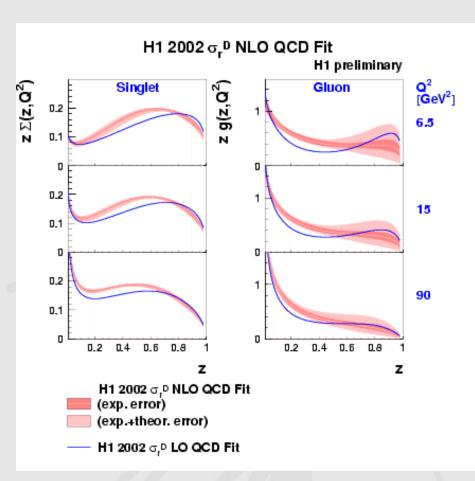
Data on low β for high Q²



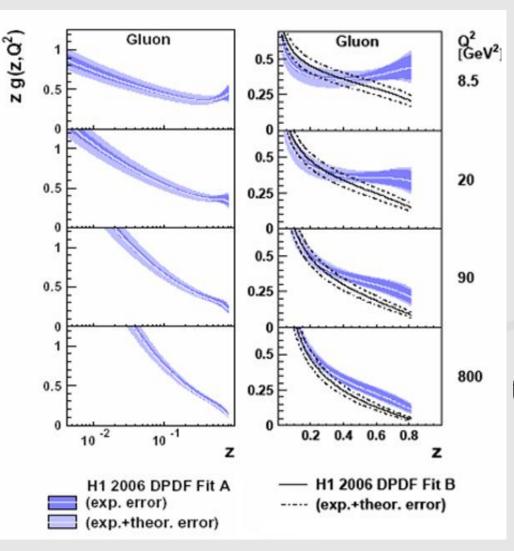
Diffractive Parton Densities (H1-02)

- Determined from NLO QCD analysis of diffractive structure function
- More sensitive to quarks
- Gluons from scaling violation, poorer constraint
- Gluon carries about 75% of pomeron momentum
- Large uncertainty at large z_P

If factorisation holds, jet and HQ cross sections give better constraint on the gluon density



Diffractive Parton Densities (H1-06)

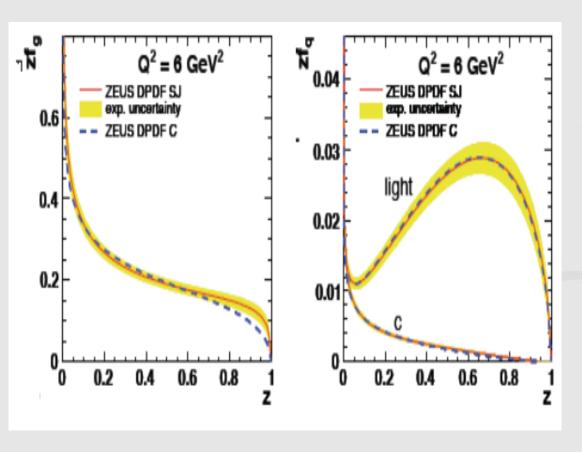


- Total quark singlet and gluon distributions obtained from NLO QCD H1. DPDF Fit A,
- Range 0.0043 < z < 0,8, corresponding to experiment
- Central lines surrounded by inner
- errors bands
 experimental uncertainties
- Outer error bands

 experimental and theoretical uncertainties

z is the momentum fraction of the parton inner the Pomeron

Diffractive Parton Densities (ZEUS-06)



- ✓ Recent Zeus fits to higher statistical large rapidity gaps
- ✓ Improved heavy flavour treatment
- ✓ DPDFs dominated by gluon density
- ✓ It extends to large z

*F*₂ Structure Funcion

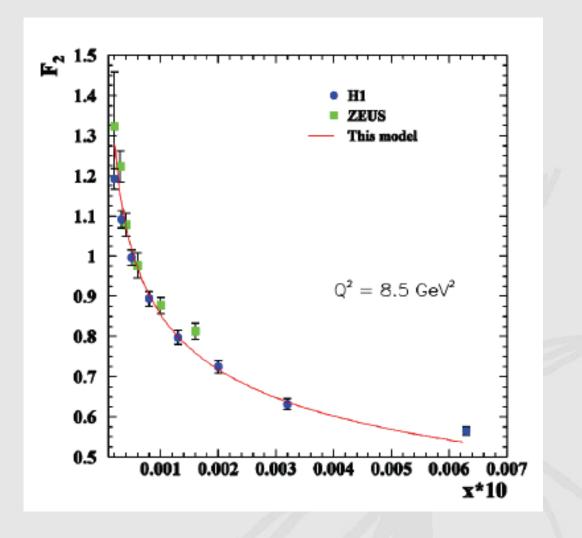
Comparison between HERA data and model for F_2 DIS structure function

$$F_2(s,Q^2) \approx \frac{(1-x)Q^2}{\pi\alpha_e} \Im A(s,Q^2)/s$$

All parameter fixed

Reproduction of experimental data at small x and moderate Q^2 with model by

Fazio et al. (2010)



* Fazio, Summerschool Acquafredda 2010

The HERA Collider

Publications on diffraction made by H1 Collaboration *

Event	Number of papers
Diffractive Cross Sections (SD, DD)	11
Diffractive Final States	14
Quasi-elastic Cross Sections	20
Total cross sections / decomposition	2

Diffractive processes

Hadronic processes can be characterized by an energy scale

Soft processes – energy scale of the order of the hadron size (~ 1 fm) pQCD is inadequate to describe these processes

$$\alpha_{soft}(t) = 1.08 + 0.25t$$

Hard processes – "hard" energy scale ($> 1 \text{ GeV}^2$)

can use pQCD

"factorization theorems"

Separation of the perturbative part from non-perturbative

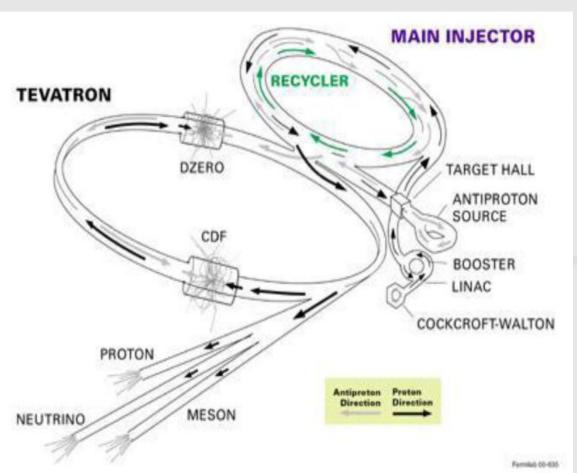
$$\alpha_{hard}(t) = 1.30 + 0.02t$$

■ Most of diffractive processes at HERA **soft processes**"

Tevatron

pp Collider

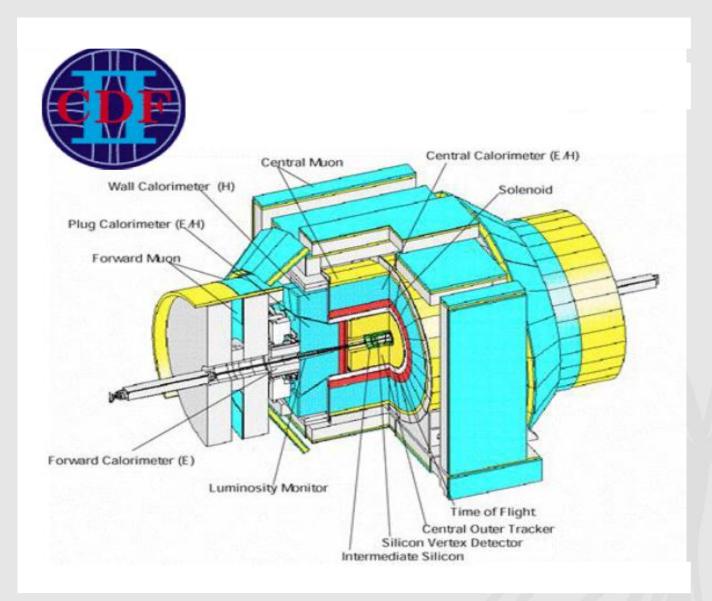
✓ Diffractive reactions at hadron colliders are defined as reaction which no quantum numbers are exchanged between colliding particles



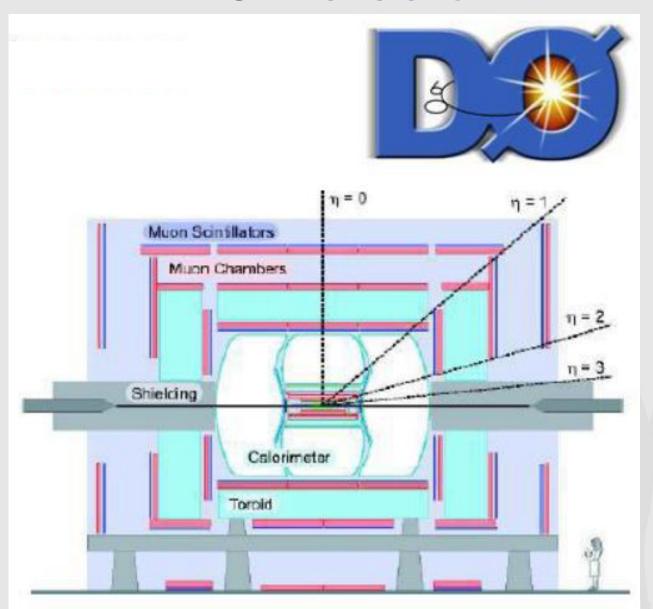
3 center-of-mass energies

Run	Energy – \sqrt{s}		
(years)	(TeV)		
I (1992-96)	1.8		
IC (1994-95)	0.63		
II (2001 – current)	1.96		

CDF Detector



D0 Detector



- Proton-antiproton scattering at highest energy
- Soft & Hard Diffraction

 $\xi < 0.1 \implies O(1) \text{ TeV "Pomeron beams"}$

Structure function of the Pomeron $F(\beta,Q^2)$

Diffraction dynamics? Exclusive final states?

 Gap dynamics in pp presently not fully understood!

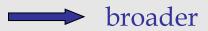
= anti-proton momentum loss $F_2^{\mathbb{P}}(\beta, Q^2)$ P hard scatter proton remnant

$$\xi = M_X^2 / s$$

- IS paper (1985) first discussion of high- p_T jets produced via Pomeron exchange
- Events containing two jets of high transverse energy and a leading proton were observed in proton-antiproton scattering at $\sqrt{s} = 630$ GeV by the CERN UA8 experiment (Bonino et al. 1988)
- Rate of jet production in this scattering ── 1 2%
- It was in agreement with the predicted order of magnitude made by IS
- Since then hard diffraction in proton-proron scattering was pursued by the CDF and D0 Collaborations at the Tevatron
- UA8 group reported some evidence for a hard Pomeron substructure β (1- β) (Brand et al. 1992)

55

Kinematical range for physical process at Tevatron



- Experiments have been investigating diffractive reactions
- First results to diffractive events were reported in 1994-1995 (Abachi et al. 1994; Abe et al. 1995)
- Then, three different classes of processes are investigated at the Tevatron

Double diffraction

Single diffraction

Double Pomeron Exchange

Both CDF and D0 detectors cover the pseudorapidity range

$$|\eta| \le 4-5$$

Diffractive Physics at 1.96 TeV

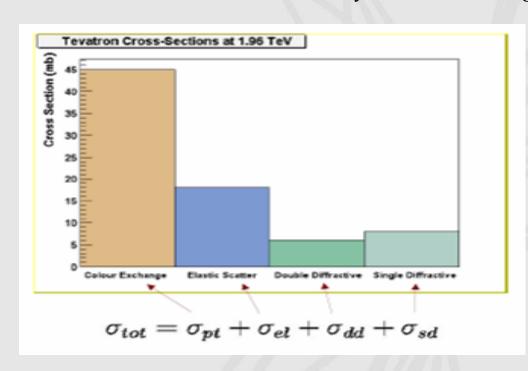
❖ Physics observed at the Tevatron described by colour exchange perturbative QCD

❖ There is also electroweak physics on a somewhat smaller scale

❖ There is a significative amount of data that is not described by colour exchange

pertubative interaction

WHAT IS HAPPENING?



Pomeron as composite

Considering Regge factorization we have

Data Good fit with added Reggeon for HERA

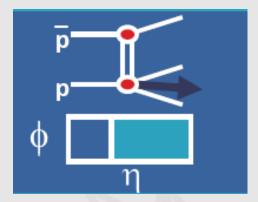
Pomeron as gluons

- Elastic amplitude \Longrightarrow neutral exchange in t-channel
- Smallness of the real part of the diffractive amplitude \(\bigcirc\) nonabeliance

Born graphs in the abelian and nonabelian (QCD) cases look like

Hard Single diffraction

• Large rapidity gap



Diffractive production of some objects is possible to be studied

Jets, W, J/
$$\psi$$
, b ...

Measurement of the ratio of diffractive to non-diffractive production

All	fractions					
	~ 1%					

Hard	component	Fraction (R)%
Dijet		0.75 ± 0.10
W		1.15 ± 0.55
b		0.62 ± 0.25
J/ψ		1.45 v 0.25

Diffractive dijet cross section

$$\sigma(\overline{p}p \to \overline{p}X) \approx F_{jj} \otimes F_{jj}^D \otimes \hat{\sigma}(ab \to jj)$$

Study of the diffractive structure function

$$F_{jj}^{D} = F_{jj}^{D}(x, Q^{2}, t, \xi)$$

❖ Experimentally determine diffractive structure function

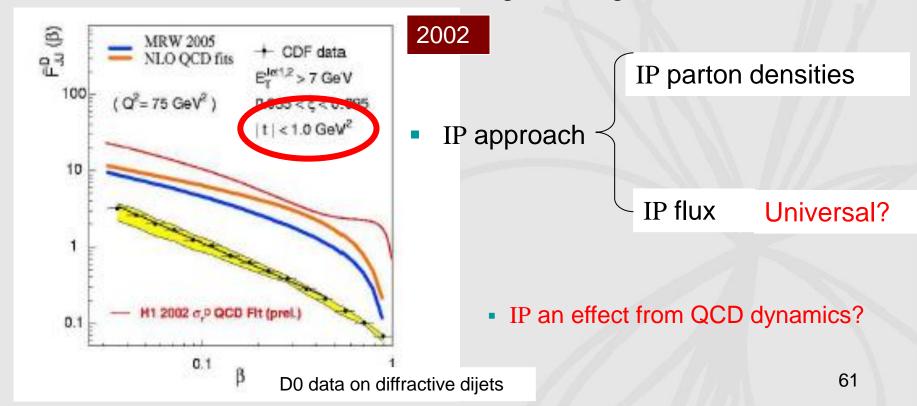
$$R_{\frac{SD}{ND}}(x,\xi) = \frac{\sigma(SD_{jj})}{\sigma(ND_{jj})} = \frac{F_{jj}^{D}(x,Q^{2},\xi)}{F_{jj}(x,Q^{2})}$$
DATA
$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

Will factorization hold at Tevatron?

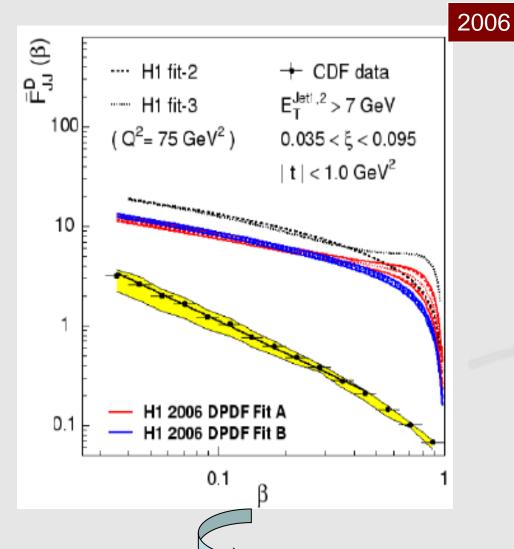
Hadronic case

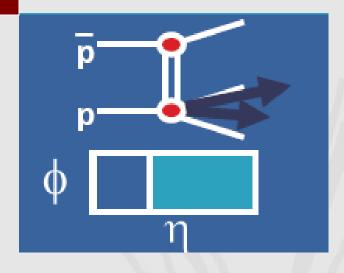
To calculate diffractive hard processes at the Tevatron

- Using diffractive parton densities from HERA
- Obtain cross sections one order of magnitude higher



Hadronic case

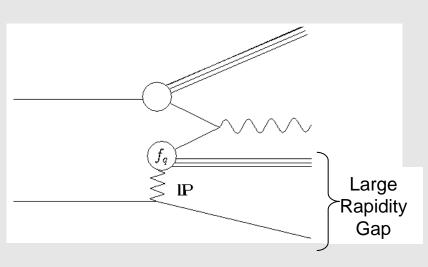




Factorization breakdown between HERA and Tevatron

IS doesn't describe DATA diffractive cross section

Gap Survival Probability (GSP)



$$|\langle S \rangle|^2 = \frac{\int d^2b |A(s,b)|^2 P^s(s,b)}{\int d^2b |A(s,b)|^2}$$

GAP

region of angular phase space devoid of particles

Survival probability

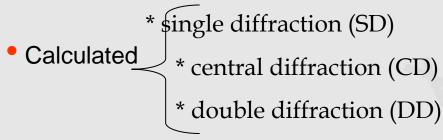
fulfilling of the gap by hadrons produced in interactions of remanescent particles

- A(s,b) amplitude of the particular process (parameter space b) of interest at center-of-mass energy \sqrt{s}
- $P^S(s,b)$ probability that no inelastic interaction occurs between scattered hadrons

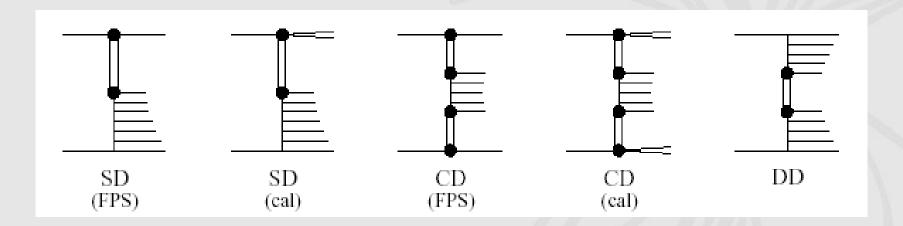
KMR – Gap Survival Probability

Khoze-Martin-Ryskin Eur. Phys. J. C. 26 229 (2002)

- Survival probability of the rapidity gaps
- Associated with the Pomeron (double vertical line)

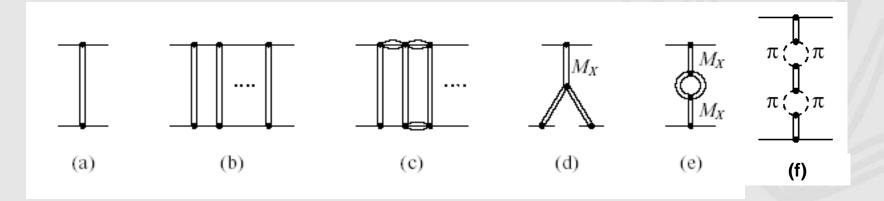


- FPS (cal) forward photon spectrometer (calorimeter),
- Detection of isolated protons (events where leading baryon is either a proton or a N*)



KMR model

- t dependence of elastic pp differential cross section in the form exp (Bt)
- Pion-loop insertions in the Pomeron trajectory
- Non-exponential form of the proton-Pomeron vertex β (t)
- Absorptive corrections, associated with eikonalization



- (a) Pomeron exchange contribution;
- (b-e) Unitarity corrections to the pp elastic amplitude.
- (f) Two pion-loop insertion in the Pomeron trajectory

KMR model

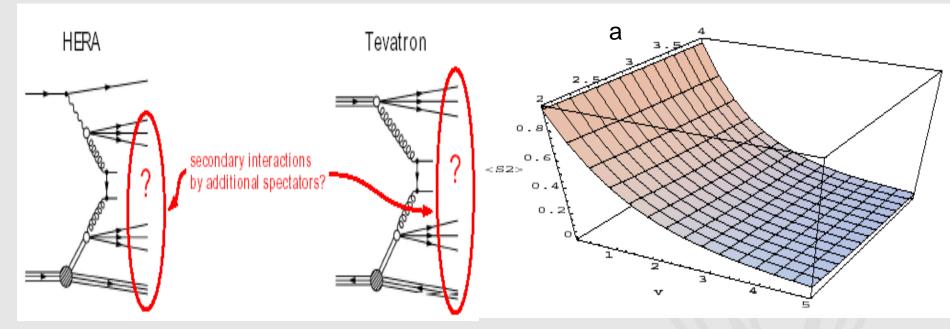
• GSP KMR values

		Survival probability S^2 for:				
\sqrt{s}	2b	$^{ m SD}$	$^{ m SD}$	$^{\mathrm{CD}}$	$^{\mathrm{CD}}$	DD
(TeV)	$(\mathrm{GeV^{-2}})$	(FPS)	(cal)	(FPS)	(cal)	
	4.0	0.14	0.13	0.07	0.06	0.20
0.54	5.5	0.20	0.18	0.11	0.09	0.26
	7.58	0.27	0.25	0.16	0.14	0.34
1.8	4.0	0.10	0.09	0.05	0.04	0.15
	5.5	0.15	0.14	0.08	0.06	0.21
	8.47	0.24	0.23	0.14	0.12	0.32
14	4.0	0.06	0.05	0.02	0.02	0.10
	5.5	0.09	0.09	0.04	0.03	0.15
	10.07	0.21	0.20	0.11	0.09	0.29

GSP considering multiple channels

GLM - GSP

Gotsman-Levin-Maor PLB 438 229 (1998 - 2002)



- Survival probability as a function of Ω (s,b = 0)
- \bullet opacity (optic density) of interaction of incident hadrons
- Suppression due to secondary interactions by additional spectators hadrons 67

GLM model

GLM - arXiv:hep-ph/0511060v1 6 Nov 2005

- Eikonal model originally explain the exceptionally mild energy dependence of soft diffractive cross sections
- s-channel unitarization enforced by the eikonal model
- Operates on a diffractive amplitude in different way than elastic amplitude
- ${}^{\bullet}$ Soft input obtained directly from the measured values of $\sigma_{tot},\,\sigma_{el}$ and hard radius R_H
- F1C and D1C different methods from GLM model

\sqrt{s} (GeV)	$S_{CD}^2(F1C)$	$S_{CD}^2(D1C)$	$S^2_{SD_{incl}}(F1C)$	$S^2_{SD_{incl}}(D1C)$	$S_{DD}^2(F1C)$	$S^2_{DD}(D1C)$
540	14.4%	13.1%	18.5%	17.5%	22.6%	22.0%
1800	10.9%	8.9%	14.5%	12.6%	18.2%	16.6%
14000	6.0%	5.2%	8.6%	8.1%	11.5%	11.2 %

Pomeron flux factor

• x_{IP} dependence is parametrized using a flux factor

$$f_{IP/p}(x_{IP},t) = A_{IP} \frac{e^{B_{IP}t}}{x_{IP}^{2\alpha_{IP}(t)-1}}$$

IP trajectory is assumed to be linear $\alpha_{IP}(t) = \alpha_{IP}(0) + \alpha'_{IP}t$

$$\alpha_{IP}(t) = \alpha_{IP}(0) + \alpha'_{IP}$$

 $B_{\rm IP}$, $\alpha'_{\rm IP}$

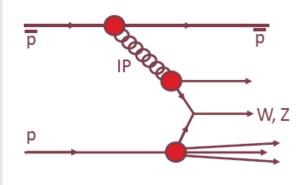
 $\begin{array}{c|c} B_{IP,} \text{ , } \alpha'_{IP} & \text{obtained from the fits to H1 forward} \\ \text{their uncertainties} & \text{proton spectometer (FPS) data} \end{array}$

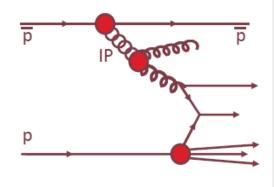
Normalization parameter x_{IP} is chosen such that

$$x_{IP} \cdot \int_{t_{cut}}^{t_{min}} f_{IP/p} dt = 1 \text{ at } x_{IP} = 0.003$$

- $|t_{\min}| \approx m_p^2 x_{IP} / (1 x_{IP})$ is the proton mass
- $|t_{cut}|=1.0$ GeV² is the limit of the measurement

W/Z Production





To leading order

W and Z produced by a quark in the Pomeron

General cross section for W and Z

$$\frac{d\sigma}{dx_{a}dx_{b}} = \sum_{a,b} \int dx_{a} f_{a/p}(x_{a}, \mu^{2}) f_{b/p}(x_{b}, \mu^{2}) \frac{d\hat{\sigma}(p\overline{p} \to [W/Z]X)}{d\hat{t}}$$

• W⁺ (W⁻) inclusive cross section

$$\frac{d\sigma}{d\eta_{e^{-}(e^{+})}} = \sum_{a,b} \int dE_{T} f_{a/p}(x_{a}) f_{b/p}^{-}(x_{b}) \left[\frac{V_{ab}^{2} G_{F}^{2}}{6s \Gamma_{W} M_{W}} \right] \frac{\hat{t}^{2}(\hat{u}^{2})}{\sqrt{A^{2} - 1}}$$

$$\mu^2 = M_W^2$$

$$\hat{t} = -E_T M_W \left[A + \sqrt{(A^2 - 1)} \right]$$

Production by gluons supressed by a factor of α_s

Can be distinguished by an associated jet

• Total decay width \longrightarrow $\Gamma_W = 2.06 \text{ GeV}$

 $G_F = 1.166 \times 10^{-5} \,\text{GeV}^{-2}$

 ullet V_{ab} is the CKM Matrix element

W+ (W-) dependence in t(u) channel

70

W (Z) Diffractive cross sections

• W⁺⁽⁻⁾ diffractive cross section

$$\frac{d\sigma}{d\eta_{e^{-}(e^{+})}} = \sum_{a,b} \int dx_{IP} g(x_{IP}) \int dE_{T} f_{a/IP}(x_{a}) f_{b/\bar{p}}(x_{b}) \left[\frac{V_{ab}^{2} G_{F}^{2}}{6s\Gamma_{W} M_{W}} \right] \frac{\hat{t}^{2}(\hat{u}^{2})}{\sqrt{A^{2} - 1}}$$

Z⁰ diffractive cross section

$$\sigma = \sum_{a,b} \int \frac{dx_{IP}}{x_{IP}} \int \frac{dx_b}{x_b} \int \frac{dx_a}{x_a} \overline{f}(x_{IP}) f_{a/IP}(x_a, \mu^2) f_{b/\bar{p}}(x_b, \mu^2) \left[\frac{2\pi C_{ab}^Z G_F M_Z^2}{3\sqrt{2}s} \right] \frac{d\hat{\sigma}(ab \to ZX)}{d\hat{t}}$$

- $f_{a/IP}$ is the quark distribution in the IP \longrightarrow parametrization of the IP structure function (H1)
- $g(x_{IP})$ is the IP flux integrated over t

$$C_{qq}^{Z} \frac{1}{2} - 2|e_q|\sin^2\theta_W + 4|e_q|^2 \sin^4\theta_W$$

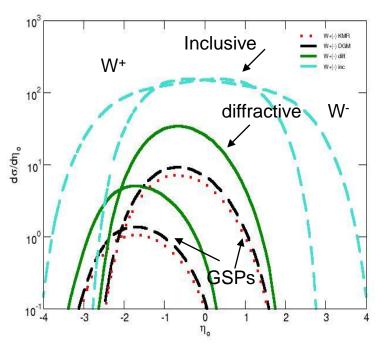
• θ_W is the Weinberg or weak-mixing angle

 $\bar{f}(x_{IP}) = \int_{-\infty}^{0} f_{IP/p}(x_{IP}, t) dt$

W⁺ and W⁻ Cross Sections

IS + GSP models

Tevatron [sqrt (s) = 1.8 TeV]



	Pseudo- rapidity	Data (%)	R(%)	
$\mid \eta_e \mid < 1.1 \mid$	1.15 ± 0.55	0.715 ± 0.045	CDF	
	$ \eta_e $ < 1.1	1.08 ± 0.25	0.715 ± 0.045	
1.8 TeV	$1.5 < \eta_e < 2.5$	0.64 ± 0.24	1.7 ± 0.875	D0
	Total $W \rightarrow ev$	0.89 ± 0.25	0.735 ± 0.055	D0
	Total $Z \rightarrow e^+e^-(*)$	1.44 ± 0.80	0.71 ± 0.05	

Average of KMR and GLM predictions

$$R = \frac{\int_{-\eta}^{\eta} \sigma_{diff}^{W^{+}} + \sigma_{diff}^{W^{-}}}{\int_{-\eta}^{\eta} \sigma_{inc}^{W^{+}} + \sigma_{inc}^{W^{-}}}$$
 Ranges
$$|\eta_{e}| < 1.1$$
 1.5< $|\eta_{e}| < 2.5$

Tevatron, without GSP – 7.2 %

Where we are

IP approach successes and failures

Perturbative + non-perturbative QCD \boxed{\omega} How exactly contribute?

- ✓ Diffraction at HERA (Soft diffraction) described by factorization model (IS)
- ✓ Same model doesn't describe Tevatron data (Hard diffraction)

BUT NOT THE ONLY

✓ Tevatron helping to find the mass of Higgs Boson

NEXT >> Overall theoretical understanding

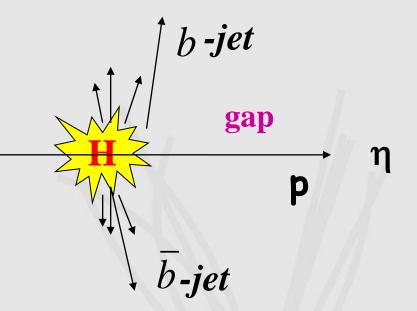
- ⇒ LHC → Diffractive Higgs production?
 - → Diffraction at nuclei collisions?
 - \rightarrow Diffractive production of X_c , X_b , ...?

Diffraction at LHC

Higgs production

Higgs production

- ✓ Standard Model (SM) of Particle Physics has unified the Eletromagnetic interaction and the weak interaction;
- ✓ Particles acquire mass through their interaction with the Higgs Field;
- ✓ Existence of a new particle: the Higgs boson
- ✓ The theory does not predict the mass of H;
- ✓ Predicts its production rate and decay modes for each possible mass;



- ightharpoonup Exclusive diffractive Higgs production pp \rightarrow p H p : **3-10 fb**
- ➤ Inclusive diffractive Higgs production $p p \rightarrow p + X + H + Y + p : 50-200 \text{ fb}$

Tevatron cuts

- ✓ LHC opens a new kinematical region:
- ✓ CM Energy in pp Collisions: 14 TeV

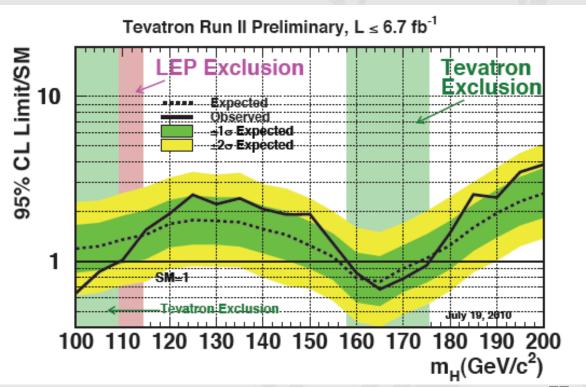
7x Tevatron Energy

✓ Luminosity: 10 – 100 fb⁻¹

10 x Tevatron luminosity

✓ Evidences show new allowed mass range excluded for Higgs Boson production

✓ Tevatron exclusion ranges are a combination of the data from CDF and D0



Gluon fusion

o Focus on the gluon fusion

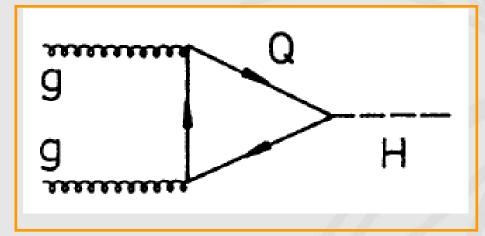
$$pp \to gg \to H$$

o Main production mechanism of Higgs boson in high-energy pp collisions

Gluon coupling to the Higgs boson in SM

triangular loops of top quarks

Lowest order to gg contribution



Gluon fusion

Lowest order

partonic cross section expressed by the gluonic width of the Higgs

boson

$$\hat{\sigma}_{LO}(gg \to H) = \frac{\sigma_0}{m_H^2} \delta(\hat{s} - m_H^2)$$

$$\sigma_0 = \frac{8\pi^2}{m_H^3} \Gamma_{LO}(H \to gg)$$

$$\Gamma_{LO}(H \to gg) = \frac{G_F \alpha_s^2}{36\sqrt{2}\pi^3} m_H^3 \left| \frac{3}{4} \sum_Q A_Q(\tau_Q) \right|^2$$

$$A_Q(\tau_Q) = 2[\tau + (\tau - 1)f(\tau)]/\tau^2$$

$$f(\tau) = \arcsin^2 \sqrt{\tau}$$

$$f(\tau) = \arcsin^2 \sqrt{\tau}$$

Quark Top

 \hat{S} \Longrightarrow gg invariant energy squared

dependence

$$au_Q = m_H^2 / 4m_Q^2$$

LO hadroproduction

✓ Lowest order two-gluon decay width of the Higgs boson

$$\sigma_0 = \frac{G_F \alpha_s^2(\mu^2)}{288\sqrt{2}\pi} \left| \frac{3}{4} \sum_q A_Q(\tau_Q) \right|^2$$

✓Gluon luminosity
$$\longrightarrow \frac{d\mathcal{L}^{gg}}{d\tau} = \int_{\tau}^{1} \frac{dx}{x} \ g(x, M^2) g(\tau/x, M^2)$$

PDFs MSTW2008

✓ Lowest order proton-proton cross section

$$\sigma_{LO}(pp \to H) = \sigma_0 \tau_H \frac{d\mathcal{L}^{gg}}{d\tau_H}$$

$$\checkmark$$
 Renormalization scale μ_Q

$$au = au_H$$

$$\tau_H = \frac{m_H^2}{s}$$

 \checkmark s invariant *pp* collider energy squared

Virtual diagrams

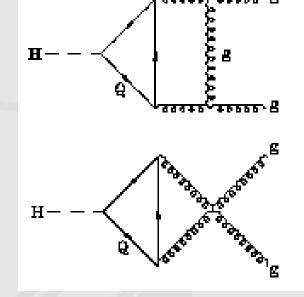
ightharpoonup Coefficient $C(\tau_Q)$ contributions from the virtual two-loop corrections

Regularized by the infrared singular part of the cross section for real

gluon emission

$$C(\tau_Q) = \pi^2 + (c(\tau_Q)) + \frac{33 - 2N_F}{6} \ln \frac{\mu^2}{m_H^2}$$

- ✓ Infrared part
- ✓ Finite τ_{Q} dependent piece
- ✓ Logarithmic term depending on the renormalization scale
 µ



Delta functions

o Contributions from gluon radiation in gg, gq and qq scattering

o Dependence of the parton densities $\begin{cases} \text{renormalization scale } \mu \\ \text{factorization scale } M \end{cases}$

$$\Delta\sigma_{gg} = \int_{\tau_H}^1 d\tau \frac{d\mathcal{L}^{gg}}{d\tau} \times \frac{\alpha_s}{\pi} \sigma_0 \left\{ -\hat{\tau} P_{gg}(\hat{\tau}) \log \frac{M^2}{\hat{s}} + d_{gg}(\hat{\tau}, \tau_Q) + 12 \left[\left(\frac{\log(1-\hat{\tau})}{1-\hat{\tau}} \right)_+ - \hat{\tau} [2-\hat{\tau}(1-\hat{\tau})] \log(1-\hat{\tau}) \right] \right\}$$

$$\Delta\sigma_{gq} = \int_{\tau_H}^1 d\tau \sum_{q,\bar{q}} \frac{d\mathcal{L}^{gq}}{d\tau} \times \frac{\alpha_s}{\pi} \sigma_0 \left\{ \hat{\tau} P_{gq}(\hat{\tau}) \left[-\frac{1}{2} \log \frac{M^2}{\hat{s}} + \log(1-\hat{\tau}) \right] + d_{gq}(\hat{\tau}, \tau_Q) \right\}$$

$$\Delta\sigma_{q\bar{q}} = \int_{\tau_H}^1 d\tau \sum_{q} \frac{d\mathcal{L}^{q\bar{q}}}{d\tau} \times \frac{\alpha_s}{\pi} \sigma_0 d_{q\bar{q}}(\hat{\tau}, \tau_Q)$$

$$\hat{\tau} = \tau_H/\tau$$

QCD coupling $\alpha_s(\mu^2)$ in the radiative corrections and LO cross sections

d functions

$$P_{gg}(\hat{\tau}) = 6 \left\{ \left(\frac{1}{1 - \hat{\tau}} \right)_{+} + \frac{1}{\hat{\tau}} - 2 + \hat{\tau} (1 - \hat{\tau}) \right\} + \frac{33 - 2N_F}{6} \delta(1 - \hat{\tau})$$

$$P_{gq}(\hat{\tau}) = \frac{4}{3} \frac{1 + (1 - \hat{\tau})^2}{\hat{\tau}}$$

F₊: usual + distribution

$$F(\hat{\tau})_{+} = F(\hat{\tau}) - \delta(1 - \hat{\tau}) \int_0^1 d\hat{\tau}' F(\hat{\tau}')$$

$$\tau_Q = m_H^2 / 4m_Q^2 \ll 1$$

Considering only the heavy-quark limit

Region allowed by Tevatron combination

$$c(\tau_Q) \rightarrow \frac{11}{2}$$

$$d_{gg}(\hat{\tau}, \tau_Q) \rightarrow -\frac{11}{2} (1 - \hat{\tau})^3$$

$$d_{gq}(\hat{\tau}, \tau_Q) \rightarrow -1 + 2\hat{\tau} - \frac{\hat{\tau}^2}{3}$$

$$d_{q\bar{q}}(\hat{\tau}, \tau_Q) \rightarrow \frac{32}{27} (1 - \hat{\tau})^3$$

NLO Cross Section

$$gg \to H$$

- Invariant energy $\hat{s} \geq m_H^2$ in the $gg, gq \text{ and } q\overline{q}$ channels
- New scaling variable $\hat{\tau}$ supplementing τ_H and τ_O

$$au_H$$
 and au_G

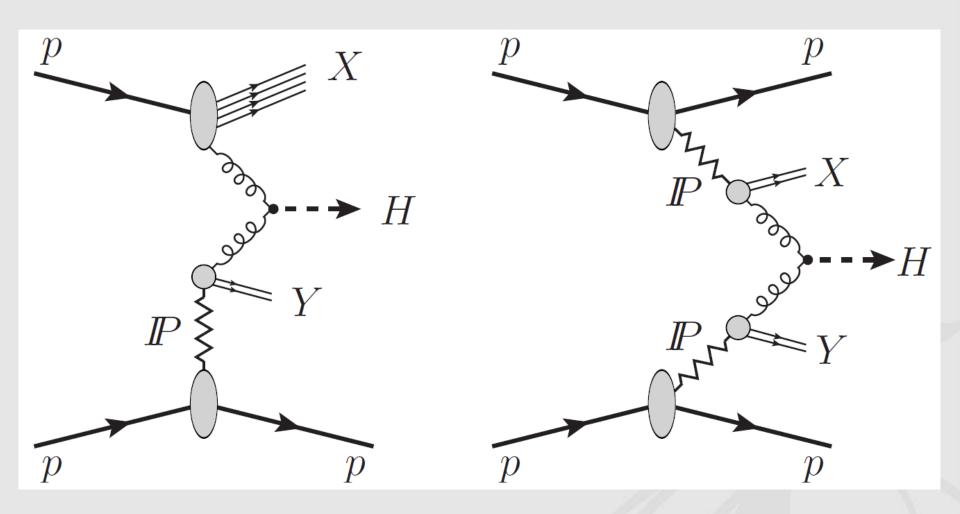
$$\hat{\tau} = \frac{m_H^2}{\hat{s}}$$

❖ The final result for the pp cross section at NLO

$$\sigma(pp \to H + X) = \sigma_0 \left[1 + C \frac{\alpha_s}{\pi} \right] \tau_H \frac{d\mathcal{L}^{gg}}{d\tau_H} + \Delta \sigma_{gg} + \Delta \sigma_{gq} + \Delta \sigma_{q\bar{q}}$$

 \diamond Renormalization scale in a_s and the factorization scale of the parton densities to be fixed properly

Diffractive processes



Diffractive cross sections

Single diffractive

$$\sigma_{\mathbb{I}Pp\to H}(M_H, M_X) = C_g \int_0^1 \int_0^1 F_{g/p}(\xi_p) \cdot F_{g/\mathbb{I}P}(\beta) \cdot \sigma_{gg\to H}(M_H, \hat{s}) d\beta d\xi_p$$

Double Pomeron Exchange

$$\sigma_{I\!\!P p \to H}(M_H, M_X) = C_g \int_0^1 \int_0^1 F_{g/I\!\!P_{\!A}}(\beta) F_{g/p}(\xi_p) \sigma_{gg \to H}(M_H, \hat{s}) d\beta d\xi_p$$

 C_g Normalization

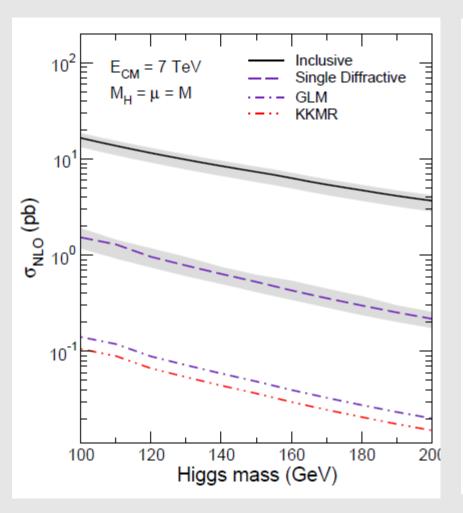
Momentum fractions: pomeron and quarks

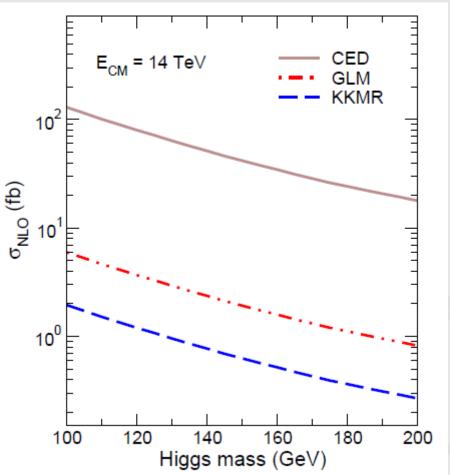
$$\xi = 1 - x_p \qquad \beta = \frac{x}{x_{IP}}$$

$$F_{g/p}(\xi_p)$$
 Gluon distributions in the proton MSTW (2008)

$$F_{g/I\!\!P}(\beta)$$
 $f_{I\!\!P/h}\left(x_{I\!\!P}\right)f_{i/I\!\!P}\left(\frac{x}{x_{I\!\!P}},\mu^2\right)$ H1 parametrization (2006) Pomeron flux Gluon distributions (i) in the Pomeron $I\!\!P$

FIT Comparison :: SD vs. DPE





SD production as M_H function (NLO)

Mass (GeV)					
		1.96	7.	8.	14.
	120	5.36(4.23)	88.59(66.44)	119.70(90.11)	346.43(256.62)
	140	2.57(2.02)	58.69(44.02)	81.43(61.30)	248.75(184.26)
	160	1.24(0.98)	39.56(29.67)	56.07(42.21)	183.06(135.60)
	180	0.60(0.47)	27.60(20.70)	40.23(30.28)	134.46(99.60)
	200	0.31(0.24)	19.96(14.97)	29.10(21.90)	104.65(77.52)

GLM KKMR

Exclusive Higgs boson production

Diffractive Higgs Production

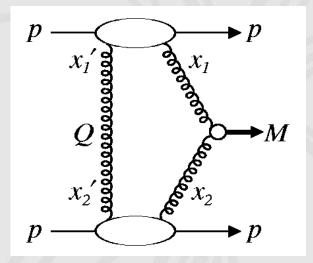
- The reaction $pp \rightarrow p + H + p$
- Protons lose small fraction of their energy :: **scattering in small angles**
- Nevertheless enough to produce the Higgs Boson

Durham Model

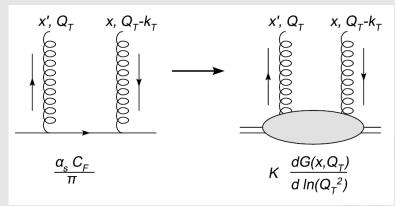
$$\frac{d\sigma}{dy} = \frac{\left|M\right|^2}{16^2 \pi^3 b^2}$$

 G_F is the Fermi constant and $Q_T^2 = -\mathbf{Q}_T^2$

Neglected the exchanged transverse momentum in the integrand



2-gluon emission



• The probability for a quark emit 2 gluon in the t-channel is given by the integrated gluon distribution

$$f(x,Q) \equiv K \partial G(x,Q) / \partial \ln Q^2$$

• The factor K is related to the non-diagonality of the distribution

$$K \approx e^{-bk_T^2/2} \frac{2^{2\lambda+3}}{\sqrt{\pi}} \frac{\Gamma(\lambda+5/2)}{\Gamma(\lambda+4)}$$

$$\frac{d\sigma}{dy} \approx \frac{\alpha_s G_F \sqrt{2}}{9b^2} \left[\int \frac{d^2 Q_T}{Q_T^4} f(x_1, Q_T) f(x_2, Q_T) \right]^2$$

Sudakov form fators

- The former cross section is infrared divergent!
- The regulation of the amplitude can be done by suppression of gluon emissions from the production vertex;
- The Sudakov form factors accounts for the probability of emission of one gluon

$$\frac{C_A \alpha_s}{\pi} \int_{Q_T^2}^{m_H^2/4} \frac{dp_T^2}{p_T^2} \int_{p_T}^{m_H/2} \frac{dE}{E} \sim \frac{C_A \alpha_s}{4\pi} \ln^2 \left(\frac{m_H^2}{Q_T^2}\right)$$

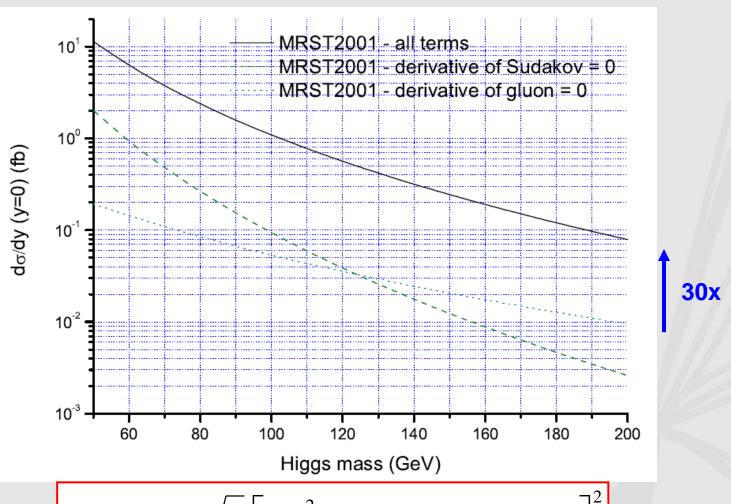
• The **suppression** of several gluon emissions exponentiate

$$e^{-S} = \exp\left(-\int_{Q_T^2}^{m_H^2/4} \frac{dp_T^2}{p_T^2} \frac{\alpha_s(p_T^2)}{2\pi} \int_0^{1-\Delta} dz \left[z P_{gg}(z) + \sum_q P_{qg}(z)\right]\right)$$

Then, the gluon distributions are modified in order to include S

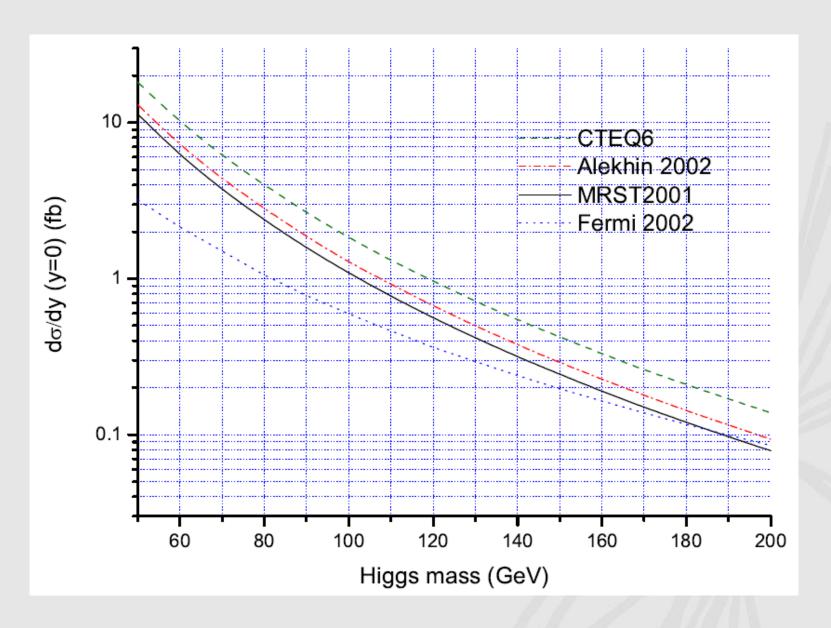
$$\tilde{f}(x, Q_T) = \frac{\partial}{\partial \ln Q_T^2} \left(e^{-S/2} G(x, Q_T) \right)$$

Cross section I :: Sudakov



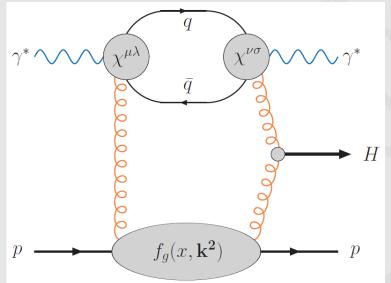
$$\frac{d\sigma}{dy} \approx \frac{\alpha_s G_F \sqrt{2}}{9b^2} \left[\int \frac{d^2 Q_T}{Q_T^4} \widetilde{f}(x_1, Q_T) \widetilde{f}(x_2, Q_T) \right]^2$$

Cross section II :: PDFs



Photoproduction mechanism

- The Durham group's approach is applied to the photon-proton process;
- This is a subprocess of **Ultraperipheral Collisions**;
- Hard process: photon splitting into a color dipole, which interacts with the proton;



Dipole contribution

$$\Im A_T = -\frac{s}{3} \frac{M_H^2 \alpha_s^3 \alpha}{\pi v} \sum_q e_q^2 \left(\frac{2C_F}{N_c}\right) \int \frac{\mathrm{d}\boldsymbol{k}^2}{\boldsymbol{k}^6} \int_0^1 \frac{[\tau^2 + (1-\tau)^2][\alpha_\ell^2 + (1-\alpha_\ell)^2]\boldsymbol{k}^2}{\boldsymbol{k}^2 \tau (1-\tau) + Q^2 \alpha_\ell (1-\alpha_\ell)} \, \mathrm{d}\alpha_\ell \, \mathrm{d}\tau.$$

γp cross section

▶ The cross section is calculated for central rapidity $(y_H = 0)$

$$\left. \frac{d\sigma}{dy_H dt} \right|_{y_H, t=0} = \frac{S_{gap}^2}{2\pi B} \left(\frac{\alpha_s^2 \alpha M_H^2}{3N_c \pi v} \right)^2 \left(\sum_q e_q^2 \right)^2 \left[\int_{\mathbf{k}_0^2}^{\infty} \frac{d\mathbf{k}^2}{\mathbf{k}^6} e^{-S(\mathbf{k}^2, M_H^2)} f_g(\mathbf{x}, \mathbf{k}^2) \mathcal{X}(\mathbf{k}^2, Q^2) \right]^2$$

- ▶ Proton content¹: $\alpha_s C_F/\pi \rightarrow f_g(x, \mathbf{k}^2) = \mathcal{K} \partial_{(\ell n \mathbf{k}^2)} xg(x, \mathbf{k}^2)$
- ▶ Gap Survival Probability²: $S_{gap}^2 \rightarrow 3\%$ (5%) for LHC (Tevatron)
- ▶ Gluon radiation suppression³: Sudakov factor $S(\mathbf{k}^2, M_H^2) \sim \ell n^2 \left(M_H^2 / 4 \mathbf{k}^2 \right)$
- ► Cutoff \mathbf{k}_0^2 : Necessary to avoid infrared divergencies :: $\mathbf{k}_0^2 = 1$ GeV².
- ▶ Electroweak vacuum expectation value: v = 246 GeV
- ▶ Gluon-proton form factor: $B = 5.5 \text{ GeV}^{-2}$

¹Khoze, Martin, Ryskin, EJPC **14** (2000) 525

²Khoze, Martin, Ryskin, EJPC **18** (2000) 167

³Forshaw, hep-ph/0508274

Ultraperipheral Collisions

Photon emission from the proton

$$\sigma(pp(A) \to p + H + p(A)) = 2 \int_{\omega_0}^{\sqrt{s}/2} d\omega \, \frac{dn_i}{d\omega} \, \sigma_{\gamma p}(\omega, M_H),$$

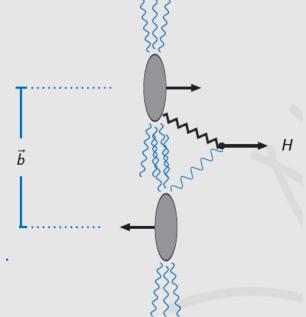
with photon fluxes

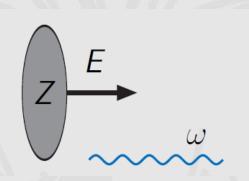
$$\frac{dn_p}{d\omega} = \frac{\alpha_{em}}{2\pi\omega} \left[1 + \left(1 - \frac{2\omega}{\sqrt{s}}\right)^2 \right] \left(\ell nA - \frac{11}{6} + \frac{3}{A} - \frac{3}{2A^2} + \frac{1}{3A^2} \right).$$

$$\frac{dn_{A}}{d\omega} = \frac{2Z^{2} \alpha_{em}}{\pi \omega} \left[\mu K_{0}(\mu) K_{1}(\mu) - \frac{\mu^{2}}{2} [K_{1}^{2}(\mu) - K_{0}^{2}(\mu)] \right].$$

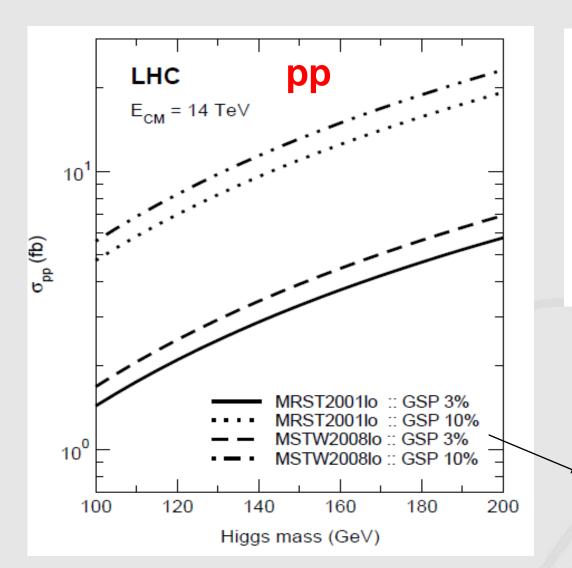
 The photon virtuality obey the Coherent condition for its emission from a hadron under collision

$$Q^2 \lesssim 1/R^2$$





Photoproduction cross section



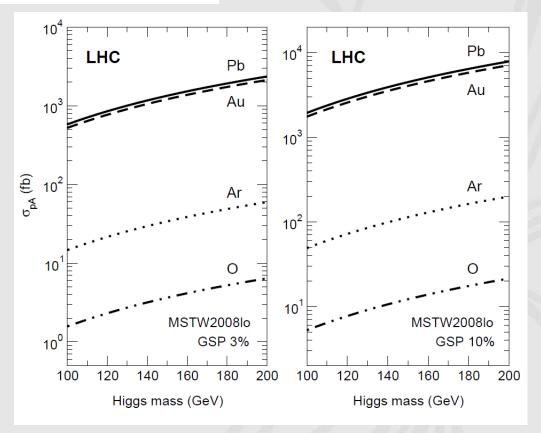
Subprocess	GSP (%)	σ_{pp} (fb)
$\mathbb{P}\mathbb{P}$	2.6	3.00
$I\!\!PI\!\!P$	0.4	0.47
$\gamma\gamma$	100	0.12
γp	3.0	1.77
γp	10.	5.92

 $M_H = 120 \text{ GeV}$ Cross section = 1.77-6 fb

Estimations for the GSP in the LHC energy

pA collisions

Process	σ (fb)	BR $\times \sigma$ (fb)	\mathcal{L} (fb ⁻¹)	Events/yr
pp	1.77	1.27	1.(30.)	1 (30)
pp	5.92	4.26	1.(30.)	6 (180)
$p\mathrm{Pb}$	617.	444.	0.035	21
pPb	2056.	1480.	0.035	72



Conclusions

- ✓ GFPAE has been working in hard diffractive events
- ✓ Use of IS with absorptive corrections (gap survival probability)
 - describe Tevatron data for W⁺⁻ and Z⁰ production
 - → rate production for quarkonium + photon at LHC energies

$$R^{(J/\psi)}_{SD} = 0.8 - 0.5 \%$$
 $R^{(Y)}_{SD} = 0.6 - 0.4 \%$ (first in literature)

predictions for heavy quark production (SD and DPE) at LHC energies possible to be verified in AA collision (diffractive cross section in pp, pA and AA collisions)

$$C\overline{C}$$
 $B\overline{B}$

A = Lead and Calcium

Higgs predictions in agreement with Hard Pomeron Exchange

Cross sections of Higgs production 1 fb (DPE); 60-80 fb (SD)

100

Conclusions

✓ Exclusive photoproduction is promising for the LHC

strong suppression of backgrounds

cross section prediction **2-6** fb

expecting between 1 and 6 events per year

additional signature with the H γ associated production

High event rates for pA collisions

 $\sigma = 1 \text{ pb} \longrightarrow \text{pPb collisions}$

Next

DIFFRACTION IN NUCLEAR COLLISIONS

- ✓ Gap survival probability for nuclear collisions
- ✓ Dijets in hadronic and nuclear collisions

√ ...

Thank you

Backup

The Tevatron Collider

Publications on diffraction made by CDF Collaboration

Soft Diffraction

Mesropian, Summerschool Acquafredda (2010)

Single Diffraction - PRD 50, 5355 (1994)

Double Diffraction - PRL 87, 141802 (2001)

Double Pomeron Exchange - PRL 93, 141603 (2004)

Multi-gap Diffraction – PRL 91, 011802 (2003)

Hard Diffraction

Dijets - PRL 85, 4217 (2000); PRD 77, 052004 (2008)

Di-photons - PRL 99, 242002 (2007)

Charmonium - PRL 102, 242001 (2009)

W - PRL 78, 2698 (1997)

b-quark - PRL 84, 232 (2000)

 J/ψ - PRL 87, 241802 (2001)

Roman Pot Tag Dijets - PRL 84, 5043 (2000)

Jet-Gap-Jet 1.8 TeV - PRL 74, 855 (1995)

JetGap-Jet 1.8 TeV - PRL 80, 1156 (1998)

Jet-Gap-Jet 630 GeV - PRL 81, 5278 (1998)

105