

- ALICE detector
- Selection of central diffractive single/double gap events
- Central Meson production in pp-collisions at $\sqrt{s} = 7$ TeV
- Analysis of $f_0(980)$ and $f_2(1270)$ production
- Central Meson production in Pb-Pb collisions at $\sqrt{s_{_{NN}}}=2.76$ TeV
- Analysis of $\rho(770)$
- Conclusions, outlook

Rainer Schicker, Heidelberg

The ALICE experiment

Acceptance central barrel -0.9 < η < 0.9

Acceptance muon spectr. $-2.5 < \eta < -4.$

Rainer Schicker, Heidelberg

ALICE pseudorapidity acceptance

 \rightarrow additional forward detectors (no particle identification) $-3.7 < \eta < -0.9$ and $0.9 < \eta < 5.1$ \rightarrow definition of gaps $\eta_{\perp}, \eta_{\perp}$ **p-p luminosity** $L = 5x10^{30} \text{ cm}^{-2} \text{ s}^{-1}$: \rightarrow reduced prob. overlapping events diffractive L0 trigger (hardware): **Pixel or TOF mult (central barrel)** VOA: gap η_{\perp} : 2.8 < η < 5.1 $\rightarrow \Delta \eta \sim 4x0.6$ VOC: gap η : -3.7< η < -1.7 $\rightarrow \Delta \eta \sim 4x0.5$ <u>high level trigger (software):</u> gap η₊: $0.9 < \eta < 5.1$ γ V0-FMDgap η :-3.7 < η < -0.9 \int SPD-TPC

 \rightarrow improved including ADA, ADD

Rainer Schicker, Heidelberg

ALICE central barrel comparison to other LHC detectors

low magnetic field

 $\rightarrow low p_T trigger ?$

Rainer Schicker, Heidelberg

ALICE acceptance

• ALICE acceptance matched to diffractive central production:

central C-side barrel A-side $\Delta \eta \sim 3$ $\Delta \eta \sim 2$ $\Delta \eta \sim 4$

gap	had	gap
-----	-----	-----

Activity table

yes	yes	no	gap A
no	yes	no	double
no	yes	yes	gap C
yes	yes	yes	no gap

Rainer Schicker, Heidelberg

Particle Identification in ALICE

TPC dedx spectrum in pp-collisions at $\sqrt{s} = 7$ TeV

TOF measured particle beta vs. signed momentum in pp-collisions at $\sqrt{s} = 7$ TeV

Rainer Schicker, Heidelberg

Central Meson production in pp-collisions at $\sqrt{s} = 7$ TeV

- Data taken in 2010-2011 with minimum bias trigger
- Offline analysis event type: no gap/gap A/gap C/double gap
- Compare single/double gap events to no gap events
- Analysis of multiplicity-distribution
- Analysis of $f_0(980)$ and $f_2(1270)$ production

First analysis min bias data

 $3\ \sigma$ cut on single gap, double gap fraction on a run basis

Rainer Schicker, Heidelberg

•	Cuts on beam-gas events and backgro	ound 3.5×10^8	
•	Primary vertex	$2.9x10^{8}$	
•	2-track events total	3.2x10 ⁷	
	– no gap	3.1×10^{7}	
	- double gap V0 (L0 trigger)	1.6×10^{5}	
	- double gap V0-FMD-SPD-TPC	2.2×10^4	

Rainer Schicker, Heidelberg

Multiplicity distribution

• Multiplicity distribution of gap and no gap events (good tracks)

Rainer Schicker, Heidelberg

Invariant mass distribution

• Invariant mass distribution of pion pairs

distribution for double gap events unlike and like-sign pairs (not corrected for p_T -dependent acceptance) Normalized Counts / (20 MeV/c²) pp @√s = 7 TeV -MD-SPD-TPC 0.045)ouble gaps 0.04 0.035 0.03 ALICE Performance 13/04/2011 0.025 0.02 0.015 0.005 0.6 1.2 1.4 1.6 $M(\pi\pi)$ (GeV/c²)

like-sign corrected distribution for double and no-gap events

 \rightarrow enhanced f_0, f_2 production in double gap events

Rainer Schicker, Heidelberg

Diffractive data taking in Pb-Pbcollisions at $\sqrt{s_{_{NN}}} = 2.76 \text{ TeV}$

- Heavy-ion collisions Pb-Pb at the LHC nov-dec 2010
- ALICE collected data on 12 M minimum bias collisions
- dedicated diffractive triggers running:
 - OM2 TOF only trigger: (number of hits in TOF \geq 2)
 - CCUP2 TOF+SPD+V0 trigger: (TOF hits \geq 2) AND (SPD hits \geq 2) AND (V0A,V0C)
 - CMUP1 Muon arm + V0 trigger: (at least one muon candidate) AND (V0A)
- OM2 running in early low luminosity runs, CMUP1 and CCUP2 in later parts, CCUP2 downscaled by factor 5-30

Rainer Schicker, Heidelberg

Electromagnetic/diffractive interactions in heavy ion collisions at high energies

- Electromagnetic interactions in heavy ion reactions:
 - Photoabsorption with breakup of nucleus or excitation of giant dipole resonance followed by neutron emission → beam particle is lost
 - Photon-photon: Electromagnetic production of pseudoscalars π⁰,η,η' and pairs of bosons (π⁺π⁻, K⁺K⁻) and fermions (e⁺e⁻, μ⁺μ⁻, τ⁺τ⁻)
 - Photon-hadron: diffractive photoproduction of vector mesons

Baur et al, *Coherent gamma-gamma and gamma-A interactions in very peripheral collisions at relativistic ion colliders*, Phys. Rep. **364**, 359 (2002)

	AA→X nuclear	$AA \rightarrow AAX$ $PP \rightarrow hadrons$	$AA \rightarrow AAX$ $\gamma\gamma \rightarrow hadrons$	$AA \rightarrow AAX$ $\gamma P \rightarrow hadrons$	
σ(pp)@LHC	70 mb	0.52 mb	15 nb	2.8 µb	$M_{hadr} > 1 \text{ GeV}$
σ(PbPb)@LHC	7.8 b	0.84 mb	150 mb	11 mb	

PbPb: $\gamma P \rightarrow$ hadrons: Excl. photoprod. $\rho \rightarrow \pi^+ \pi^-$ Starlight MC: $\sigma = 3.9$ b, Frankfurt, Zhalov, Strikman: $\sigma = 7.1$ b

Rainer Schicker, Heidelberg

Central Meson production in Pb-Pbcollisions at $\sqrt{s_{_{NN}}} = 2.76 \text{ TeV}$

• Events triggered by OM2 (TOF only) which contain two reconstructed tracks \rightarrow coherent production implies low transverse momentum $p_{\tau} < \sim 100 \text{ MeV/c}$

Pair p_{T} for unlike and like-sign pairs

→ Coherent peak seen in unlike-sign pairs, not seen in like-sign pairs

Uncorrected M_{inv} distribution of unlike-sign pairs with $p_T < 150 \text{ MeV/c}$ $\rightarrow Coherent \rho$ -production

Rainer Schicker, Heidelberg

Central Meson production in Pb-Pbcollisions at $\sqrt{s_{_{NN}}} = 2.76 \text{ TeV}$

• Events triggered by CCUP2: (activity in central barrel) AND (V0A,V0C)

Pair p_{T} for unlike and like-sign pairs

 \rightarrow Coherent peak seen in unlike-sign pairs, not seen in like-sign pairs Uncorrected M_{inv} distribution of unlike-sign pairs with $p_T < 150 \text{ MeV/c}$ \rightarrow Coherent ρ -production

0.8

unlike sign track pairs

Pertormance

23/02/2011

1.8

 M_{inv} (GeV/c²)

1.6

with $p_{-}<\bar{1}50$ MeV/c

Triggered by SPD & TOF & not(V0)

1.2

1.4

Rainer Schicker, Heidelberg

Conclusions, outlook

- Double gap selects different diffractive channels in pp and Pb-Pb collisions
- Pomeron-Pomeron in pp-collisions:
 - Double gap events show different multiplicity distribution
 - Two track invariant mass distribution of double gap events can be understood as continuum plus f_0 , f_2 resonance contribution
 - f_0 , f_2 enhancement in double gap events as compared to no-gap events
- Photon-Pomeron in Pb-Pb-collisions:
 - Coherent ρ-photoproduction established as dominant reaction channel in double gap events of Pb-Pb-collisions
 - ρ-photoproduction cross section to be determined
 - Search $J/\psi \rightarrow e^+e^-$, $\gamma\gamma \rightarrow e^+e^-$ in central barrel, $J/\psi \rightarrow \mu^+\mu^-$, $\gamma\gamma \rightarrow \mu^+\mu^-$ in muon arm
- Add Zero Degree Calorimeter info to study breakup/no breakup of beam particles

Rainer Schicker, Heidelberg

Backup: Gap definition in ALICE

Invariant mass of pion pairs in double gap events

gap definition:

V0A: $2.8 < \eta < 5.1$ V0C: $-3.7 < \eta < -1.7$ Counts / (20 MeV/c²) 120 FMD-SPD-TPC Double gaps pp@√s = 7 TeV Unlike sign Like sian 100 80 ALICE Performance 13/04/2011 60 40 20 6 1.8 08 12 1.4 $M(\pi\pi)$ (GeV/c²)

gap definition:

V0A-FMD-SPD-TPC: $0.9 < \eta < 5.1$ V0C-FMD-SPD-TPC: $-3.7 < \eta < -0.9$

Rainer Schicker, Heidelberg

Backup: Photon measurements in ALICE

• Photon measurements in ALICE by EMCAL, PHOS and conversion method

X vs Y distribution of reconstructed photon conversions

Two electromagnetic calorimeters: EMCAL: $-0.7 < \eta < 0.7$, $\Delta \phi = 110^{\circ}$ lead sampling, WS-fiber readout PHOS: $-0.12 < \eta < 0.12$, $\Delta \phi = 100^{\circ}$ PbWO₄ crystals, PIN-diode readout

Rainer Schicker, Heidelberg