Elastic differential cross section at 7 TeV and dynamical gluon mass model predictions

D. A. Fagundes¹, E. G. S. Luna², M. J. Menon¹, A. A. Natale³

¹IFGW - UNICAMP ²IF - UFRGS ³IFT - UNESP

September 21, 2011

II Workshop on Diffractive Physics at the LHC

- 1. Introduction
- 2. DGM Approach
- 3. Eikonal and Impact Parameter Representation
- 4. Elementary Cross Sections
- 5. Fit Procedures and Results
- 6. Summary and Outlook

Introduction

From ISR to LHC: $\sqrt{s} \sim 100 \sqrt{s}_{ISR}$ and momentum transfer up to 10 GeV² \rightarrow huge experimental developments

Good moment for testing model predictions!

The rise of σ_{jet} (s) is driven by low-x parton-parton collisions. From the Parton Model, the perturbative jet cross section follows

$$\begin{aligned} \sigma_{jet}^{AB}(s, p_{tmin}) &= \mathcal{D}(s, p_{tmin}) \begin{cases} \sum_{i,j,k,l} f_{i|A}(x_1, p_t^2) f_{j|B}(x_2, p_t^2) \frac{d\hat{\sigma}_{ij}^{kl}(\hat{s})}{dp_t} \end{cases} \\ \mathcal{D}(s, p_{tmin}) &\equiv \int_{p_{tmin}}^{\sqrt{s}/2} dp_t \int_{4p_{tmin}^2/s}^1 dx_1 \int_{4p_{tmin}^2/(x_1s)}^1 dx_2 \end{aligned}$$
(1)

 x_1, x_2 the fractions of particle momentum carried by partons, $\sqrt{\hat{s}} = \sqrt{x_1 x_2 s}$ the CM energy of two partons and $\hat{\sigma}$ the hard parton cross section

DGM Approach - Rise of gg Interactions

Ansatz: the gluon distribution function inside the colliding hadrons grow with the energy and is the main responsable for the rise of $\sigma_{iet}^{AB}(s)$. Perturbative QCD gives us the $gg \rightarrow gg$ cross section:

$$\frac{d\hat{\sigma}}{d\hat{t}}(\hat{s},\hat{t}) = \frac{9\pi\alpha_s^2}{2\hat{s}}\left\{3 + \frac{\hat{s}[\hat{s}+\hat{t}]}{\hat{t}^2} + \frac{\hat{s}\hat{t}}{[\hat{s}+\hat{t}]^2} + \frac{\hat{t}[\hat{s}+\hat{t}]}{\hat{s}^2}\right\}$$

which we know to be valid only for high- p_t ! How to connect with the IR region?!

Main ideia: to recover the perturbative limit when $\hat{s} \gg \Lambda_{QCD}$. From DPT follows the elementary cross section $gg \rightarrow gg$

$$\frac{d\hat{\sigma}^{DPT}}{d\hat{t}}(\hat{s},\hat{t}) = \frac{9\pi\bar{\alpha}_{s}^{2}}{2\hat{s}} \left\{ 3 - \frac{\hat{s}[4M_{g}^{2}(\hat{s}) - \hat{s} - \hat{t}]}{[\hat{t} - M_{g}^{2}(\hat{s})]^{2}} - \frac{\hat{s}\hat{t}}{[3M_{g}^{2}(\hat{s}) - \hat{s} - \hat{t}]^{2}} - \frac{\hat{t}[4M_{g}^{2}(\hat{s}) - \hat{s} - \hat{t}]}{[\hat{s} - M_{g}^{2}(\hat{s})]^{2}} \right\}$$
(2)

where $\bar{\alpha}_s$ and M_g are Cornwall's finite coupling constant and dynamical gluon mass.

From Cornwall's solution of SDE for the gluon propagator, the frozen coupling constant arises

$$\bar{\alpha}_{s}(\hat{s}) = \frac{4\pi}{\beta_{0} \ln\left[(\hat{s} + 4M_{g}^{2}(\hat{s}))/\Lambda^{2}\right]},$$
(3)

and the dynamical gluon mass

$$M_g^2(\hat{s}) = m_g^2 \left[\frac{\ln\left(\frac{\hat{s}+4m_g^2}{\Lambda^2}\right)}{\ln\left(\frac{4m_g^2}{\Lambda^2}\right)} \right]^{-12/11},$$
(4)

where $\beta_0 = 11 - \frac{2}{3}n_f$ (n_f is the number of flavors) and $\Lambda = \Lambda_{QCD}$.

DGM Approach - PQCD Limit

In the high-energy limit $(\hat{s} \gg \Lambda_{QCD})$ $M_g \rightarrow 0$ $\bar{\alpha}_{s} \rightarrow \alpha_{s}$ ∜ $\frac{d\hat{\sigma}}{d\hat{t}}(\hat{s},\hat{t}) \rightarrow \frac{9\pi\alpha_s^2}{2\hat{s}} \left\{ 3 + \frac{\hat{s}[\hat{s}+\hat{t}]}{\hat{t}^2} + \frac{\hat{s}\hat{t}}{[\hat{s}+\hat{t}]^2} + \frac{\hat{t}[\hat{s}+\hat{t}]}{\hat{s}^2} \right\}$ PQCD result recovered!!

Using this fact, we have studied high-energy elastic scattering in an eikonalized framework.

Scattering Amplitude

The elastic amplitude is written as

$$A(s,t) = i \int bdb J_0(qb) [1 - e^{i\chi(s,b)}], \qquad (5)$$

 $s, q^2 = -t$ are the Mandelstam variables

Even and Odd Eikonals

For the two channels analyzed we have the complex eikonal function

$$\chi_{pp}^{\bar{p}p}(s,b) = \chi^+(s,b) \pm \chi^-(s,b)$$
(6)

where χ^{\pm} are the even/odd under crossing eikonals.

Physical Observables

All the observables are written in terms of the complex eikonal function

$$\sigma_{tot}(s) = 4\pi \int_{0}^{\infty} b \, db \, [1 - e^{-\chi_{I}(b,s)} \cos \chi_{R}(b,s)], \quad (7)$$

$$\sigma_{el}(s) = 2\pi \int_{0}^{\infty} b \, db \, |1 - e^{i\chi(b,s)}|^2, \tag{8}$$

$$\sigma_{in}(s) = 2\pi \int_0^\infty b \, db \, [1 - e^{-2\chi_I(b,s)}], \tag{9}$$

$$\rho(s) = \frac{\operatorname{Re}\{i \int b \, db \, [1 - e^{i\chi(b,s)}]\}}{\operatorname{Im}\{i \int b \, db \, [1 - e^{i\chi(b,s)}]\}},\tag{10}$$

$$\frac{d\sigma_{el}}{d|t|}(s,t) = \pi |\int bdb J_0(qb)[1-e^{i\chi(b,s)}]|^2.$$
(11)

Connection with Elementary Processes

Again, gluons of low-x dominate interactions at high energy, \sqrt{s} . The major contribution comes from the even part, parametrized as

$$\chi^{+}(b,s) = \chi_{qq}(b,s) + \chi_{qg}(b,s) + \chi_{gg}(b,s)$$

= $i[\sigma_{qq}(s)W(b;\mu_{qq}) + \sigma_{qg}(s)W(b;\mu_{qg})$
+ $\sigma_{gg}(s)W(b;\mu_{gg})].$ (12)

The odd one accounts for the difference between channels pp and $\bar{p}p$ at low energy (*a la* Regge)

$$\chi^{-}(b,s) = C^{-} \sum \frac{m_g}{\sqrt{s}} e^{i\pi/4} W(b;\mu^{-}), \qquad (13)$$

where $W(b, \mu_{ij})$, ij = qq, qg, gg, is the overlap function in b-space and σ_{ij} simulates interactions between quarks and gluons.

gg contribution

From the Parton Model, the expression for $\sigma_{gg}(s)$ follows

$$\sigma_{gg}(s) = C' \int_{4m_g^2/s}^1 d\tau \, F_{gg}(\tau) \, \hat{\sigma}_{gg}(\hat{s}), \qquad (14)$$

where $F_{gg}(\tau)$ is the gluon distribution function,

$$F_{gg}(\tau) = [g \otimes g](\tau) = \int_{\tau}^{1} \frac{dx}{x} g(x) g\left(\frac{\tau}{x}\right), \qquad (15)$$

and $\hat{\sigma}_{gg}(\hat{s})$ represents the $gg \to gg$ nonperturbative cross section

$$\hat{\sigma}_{gg}(\hat{s}) = \left(\frac{3\pi\bar{\alpha}_{s}^{2}}{\hat{s}}\right) \left\{ \frac{12\hat{s}^{4} - 55M_{g}^{2}\hat{s}^{3} + 12M_{g}^{4}\hat{s}^{2} + 66M_{g}^{6}\hat{s} - 8M_{g}^{8}}{4M_{g}^{2}\hat{s}[\hat{s} - M_{g}^{2}]^{2}} - \left[3\ln\left(\frac{\hat{s} - 3M_{g}^{2}}{M_{g}^{2}}\right)\right] \right\}.$$
(16)

We have considered the instrumental gluon distribution function

$$g(x) = N_g \frac{(1-x)^5}{x^J},$$
 (17)

where $J=1+\epsilon$ and ϵ is the soft Pomeron intercept. Then assymptotically σ_{gg} goes like:

$$\lim_{s \to \infty} \int_{4m_g^2/s}^1 d\tau \, F_{gg}(\tau) \, \hat{\sigma}_{gg}(\hat{s}) \sim \left(\frac{s}{4m_g^2}\right)^\epsilon \ln\left(\frac{s}{4m_g^2}\right). \tag{18}$$

Therefore, ϵ and m_g influences extrapolations to higher energies and cannot be arbitrarily fixed.

qq and qg contribution

Motivation: from the instrumental distribution function at low-x

$$q(x) = \frac{(1-x)^3}{\sqrt{x}},$$
 (19)

it follows the qq and qg cross sections

$$\sigma_{qq}(s) = \Sigma A \frac{m_g}{\sqrt{s}} \to \text{Regge-like}$$
(20)
$$\sigma_{qg}(s) = \Sigma \left[A' + B' \ln \left(\frac{s}{m_g^2} \right) \right] \to \text{Log-like.}$$
(21)

which we understand to dominate at low and intermediate \sqrt{s} .

Testing Parameters

We have tested a set of values for the mass m_g and for the P intercept, ϵ :

 $m_g = 350, 400, 450 \text{ and } 500 \text{ MeV}$

and

 ϵ = 0.080, 0.085 and 0.090

Next it follows the results with $\epsilon = 0.080$.

Fit Results - $\sigma_{tot}(s)$ and $\rho(s)$

Fit Results -
$$\frac{d\sigma_{el}^{pp}}{d|t|}$$
 (546 GeV and 1.80 TeV)

Predictions - $\frac{d\sigma_{el}^{pp}}{d|t|}$ e slope B(t) 7.0 TeV

Fit Results - Variations of m_g

mg	$B(t =0.4 \text{ GeV}^2)$	t _{dip}	n in $ t ^{-n}$	$d\sigma/dt$ ($ t =0.7 \text{ GeV}^2$)
[MeV]	$[GeV^{-2}]$	[GeV ²]	$[1.5 \leq t \leq 2.0~{ m GeV}^2]$	$[mb/GeV^2]$
350	22.9	0.51	10.6	4.1×10^{-2}
400	22.9	0.52	10.5	3.8×10^{-2}
450	23.0	0.53	10.3	3.2×10^{-2}
500	22.9	0.54	10.2	3.0×10^{-2}
Mean Value	22.9 ± 0.05	$0.53{\pm}0.01$	10.4±0.2	$(3.5\pm0.5) imes10^{-2}$

Predictions - Comparison with TOTEM's Measurement and Other Models

Experiment and	$B_{(t =0.4~{ m GeV}^2)}$	$ t_{dip} $		
Theory	$[GeV^{-2}]$	$[GeV^2]$		
TOTEM	23.6	0.53		
Measurement	$\pm 0.5^{stat} \pm 0.4^{sys}$	$\pm 0.01^{\textit{stat}} \pm 0.01^{\textit{sys}}$		
Block et al.	24.4	0.48		
Bourrely <i>et al.</i>	21.7	0.54		
Islam <i>et al.</i>	19.9	0.65		
Jenkovszki <i>et al.</i>	20.1	0.72		
Petrov <i>et al.</i>	22.7	0.52		
DGM	22.9 ± 0.05	$0.53{\pm}0.01$		

Predictions - Comparison with TOTEM's Measurement and Other Models

Experiment and	<i>n</i> in $ t ^{-n}$	$d\sigma/dt$ (t =0.7 GeV ²)		
Theory	$[1.5 \leq t \leq 2.0~{ m GeV}^2]$	$[mb/GeV^2]$		
TOTEM	7.8	2.7×10^{-2}		
Measurement	$\pm 0.3^{stat} \pm 0.1^{sys}$	+3.7% ^{stat} +26%syst -21%syst		
Block et al.	10.4	9.1×10 ⁻²		
Bourrely <i>et al.</i>	8.4	4.8×10^{-2}		
Islam <i>et al.</i>	5.0	8.2×10^{-3}		
Jenkovszki <i>et al.</i>	4.2	6.1×10^{-3}		
Petrov <i>et al.</i>	7.0	4.2×10^{-2}		
DGM	$10.4{\pm}0.2$	$(3.5\pm0.5) imes10^{-2}$		

Predictions -
$$\frac{d\sigma_{el}^{pp}}{d|t|}$$
 7.0 TeV

Predictions to LHC and Auger

<i>m</i> g (MeV):	350	400	450	500	Mean Value
σ_{tot} (7 TeV) (mb)	96.9	96.9	94.9	94.0	95.7±1.5
σ_{tot} (14 TeV) (mb)	108.8	108.8	106.1	104.9	$107.2{\pm}2.0$
σ_{tot} (57 TeV) (mb)	135.4	135.6	131.3	129.5	133.0 ± 3.0
σ_{in} (7 TeV) (mb)	72.2	72.3	71.2	70.6	$71.58 {\pm} 0.82$
σ_{in} (14 TeV) (mb)	79.6	79.8	78.3	77.5	$78.8 {\pm} 1.1$
σ_{in} (57 TeV) (mb)	95.8	96.1	93.9	92.8	94.7±1.6
σ_{el}/σ_{tot} (7 TeV)	0.255	0.254	0.250	0.249	$0.2520 {\pm} 0.0029$
σ_{el}/σ_{tot} (14 TeV)	0.268	0.266	0.262	0.261	$0.2643 {\pm} 0.0033$
σ_{el}/σ_{tot} (57 TeV)	0.292	0.291	0.285	0.283	$0.2878 {\pm} 0.0044$

Summary and Outlook

- Good statistical description of all analyzed data (pp and $\bar{p}p$)
- Dif. Cross Sec. at 7 TeV \rightarrow best results with $\epsilon = 0.080$ and $m_g = 450 500$ MeV
- Competitive approach (among representatives)
- First explicity connection with NPQCD (as expected at small t region)

Next Steps

- New tests on gluon distribution functions (CTEQ, MRST, MSTW) and form factors
- Extensions to other channels: meson-p, gamma-p and gamma-gamma
- Inelastic channel (unitarity)

This work is support by

Thank you!!!