Exclusive production of exotic mesons at the LHC*

Magno V. T. Machado

Instituto de Fisica - Universidade Federal do Rio Grande do Sul High Energy Physics Group - Porto Alegre, RS. Brazil

* In collaboration with Mario da Silva. [MVTM, M.L.L.da Silva, PRC83, 014907 (2011)].

- Short motivation
- Exclusive glueball candidates production in AA collisions
- Glueball production in UPC collisions
- Summary and conclusions

Short Motivation

- Glueballs are predicted by several theoretical formalisms and by lattice calculations.
- Scalar sector $(J^{PC} = 0^{++})$ seems promising as good candidates for the lightest glueball.
- Exclusive production presents smaller cross sections but a better balance signal/background.
- In heavy ion collisions, 3 channels of production have similar final state configurations (two large rapidity gaps): the processes IP IP, $\gamma \gamma$ and γID .
- Here, we will focus on two-pomeron and two-photon processes in PbPb collisions at LHC.

The *IPIP* process

Here, we consider the Bialas-Landshoff model for exclusive production of glueballs (scalar mesons).

$$\sigma_{I\!PI\!P}(pp \to p + G + p) \propto S_{\text{gap}}^2 \int \overline{|M_{fi}|^2} \left[F(t_1) F(t_2)\right]^2 dPH$$

where $F(t) \approx \exp(bt)$, with $b = 2 \text{ GeV}^{-2}$, is the nucleon form factor and dPH the phase space factor.

- $S_{\text{gap}}^2(\sqrt{s})$ is the gap survival probability factor.
- The scattering matrix is given by,

$$\mathcal{M}_{fi} = \mathcal{M}_0 \left(\frac{s}{s_1}\right)^{\alpha(t_2)-1} \left(\frac{s}{s_2}\right)^{\alpha(t_1)-1} \exp\left(\beta\left(t_1+t_2\right)\right).$$

• \mathcal{M}_0 is the amplitude in forward scattering limit $(t_1 = t_2 = 0)$.

• The Pomeron trajectory is given by $\alpha(t) = 1 + \epsilon + \alpha' t$ with $\epsilon \approx 0.08, \, \alpha' = 0.25 \text{ GeV}^{-2}$. Il Workshop on Diffractive Physics at the LHC. 21-23 Sept. 2011, Rio de Janeiro (CBPF), Brazil. – p.4

Glueball production model

Following BL model, \mathcal{M}_0 for colliding hadrons is,

$$\mathcal{M}_{0} = 32 \,\alpha_{0}^{2} \,D_{0}^{3} \,\int d^{2}\vec{\kappa} \,p_{1}^{\lambda} V_{\lambda\nu}^{J} p_{2}^{\nu} \,\exp(-3\,\vec{\kappa}^{2}/\tau^{2}),$$

- $V_{\lambda\nu}^J$ is the $gg \to G^J$ vertex depending on the polarization J of the G^J glueball meson state.
- **•** For the cases considered here, J = 0, one obtains:

$$p_1^{\lambda} V_{\lambda\nu}^0 p_2^{\nu} = \frac{s \,\vec{\kappa}^2}{2M_{G^0}^2} A,$$

• A is expressed by the mass M_G and the width $\Gamma(gg \to G)$ of the glueball meson through the relation,

$$A^2 = 8\pi M_G \,\Gamma(gg \to G)$$

• For decays widths we use $\Gamma(G \to gg) = Br(G \to gg) \Gamma_{tot}(G)$.

Glueball production model: details

Two-gluon width can be computed from the resonance branching fraction in J/ψ radiative decay,

$$\operatorname{Br}(G(0^{++}) \to gg) = \frac{8\pi(\pi^2 - 9) \operatorname{Br}[\psi \to \gamma \, G(0^{++})]}{c_R \, x |H_J(x)|^2 \, \Gamma_{tot}} \frac{M_{\psi}^2}{M_G}$$

- F. E. Close, G. R. Farrar, Z. Li, PRD55, 5749 (1997).
- To calculate the AA cross section we consider that,

$$\sigma_{AA}^{\rm CD} = A^2 \int d^2 b \, T_{AA}(b) \, \exp\left[-A^2 \, \sigma_{pp}^{in} \, T_{AA}(b)\right] \, \sigma_{pp}^{\rm CD}$$

- See C. Pajares and V.A. Ramallo, Phys. Lett. B107 (1981).
- The σ_{pp}^{in} and σ_{pp}^{CD} are the inelastic and CD cross sections in proton-proton case, respectively.
- Estimations are done for a few glueball condidates $(f_0(1500), f_0(1710) \text{ and } X(1835)) \text{ Diffractive Physics at the LHC. 21-23 Sept. 2011, Rio de Janeiro (CBPF), Brazil. p.4.$

Results for *pp* **collisions at LHC**

Glueball	Γ_{gg} [MeV]	$\sigma_{I\!\!P I\!\!P}$ @ LHC [μ b]
$f_0(1500)$	69.8	116
$f_0(1710)$	70.2	75
X(1835)	70.27	59

- Cross sections for exclusive glueball production in double Pomeron exchange process for LHC energy ($\sqrt{s} = 7 \text{ TeV}$).
- To be considered only order of magnitude estimate.
- Gap survival factor taken from KKMR model.
- Modelling: pure glueball hypothesis to compute $Br(G \rightarrow gg)$.

Results for PbPb collisions at LHC

Glueball	Γ_{gg} [MeV]	$\sigma_{I\!\!P I\!\!P}$ @ LHC [mb]
$f_0(1500)$	69.8	1.07
$f_0(1710)$	70.2	0.68
X(1835)	70.27	0.54

- Cross sections for exclusive glueball production in double Pomeron exchange process for LHC energy ($\sqrt{s} = 5.5$ TeV).
- Cross section is sensitive to the value of Pomeron intercept.
- Interpolation for $\sqrt{s} = 2.76$ TeV is straightforward.

Glueball production in $\gamma\gamma$ process

- We use Equivalent Photon Approximation (EPA).
- Cross section for $PbPb \rightarrow PbPbG$ process can be factorized into the equivalent photon spectra, $N(\omega, b)$, and $\gamma\gamma \rightarrow G$ subprocess cross section:

$$\sigma (PbPb \to PbPbG) = \int \hat{\sigma} (\gamma \gamma \to G; W_{\gamma \gamma}) \theta (|\mathbf{b}_1 - \mathbf{b}_2| - 2R_A)$$
$$\times N(\omega_1, \mathbf{b}_1) N(\omega_2, \mathbf{b}_2) d^2 \mathbf{b}_1 d^2 \mathbf{b}_2 d\omega_1 d\omega_2$$

Photon flux can be expressed in terms of the charge form factors $F(Q^2)$:

$$\begin{split} N\left(\omega,b\right) &= \frac{Z^2 \alpha_{em}}{\pi^2} \frac{1}{b^2 \omega} \left(\int_0^\infty u^2 J_1\left(u\right) \frac{F\left(Q^2\right)}{Q^2} \, du \right)^2, \\ Q^2 &= \frac{\left(\frac{b\omega}{\gamma}\right)^2 + u^2}{b^2} \end{split}$$

Brazil. – p.

Glueball production model

The glueball production in two-photon fusion can be calculated using the narrow resonance approximation:

$$\sigma \left(\gamma \gamma \to G\right) = \left(2J+1\right) \frac{8\pi^2}{M_G} \Gamma(G \to \gamma \gamma) \,\delta \left(W_{\gamma \gamma}^2 - M_G^2\right)$$

- $\Gamma(G \to \gamma \gamma)$ is the partial two-photon decay width of G, M_G is the glueball mass and J is the spin of the state G.
- For pure gluonic state, width can be computed using a nonrelativistic gluon bound-state model.
- See E.H. Kada, P. Kessler, J. Parisi, PRD39, 2657 (1989).
- Unknown parameters as the digluon wavefunction, are determined by using measured values of $\Gamma(J/\psi \rightarrow G\gamma)$.
- More sophisticated modelling is possible.

Results for PbPb collisions at LHC

Glueball Candidate	$\Gamma_{\gamma\gamma}$ [eV]	$\sigma_{\gamma\gamma}$ @ LHC [μ b]
$f_0(1500)$	0.77	1.3
$f_{0}(1710)$	7.03	8.6
X(1835)	0.021	0.02

- Cross sections for pure glueball candidates production through photon-photon fusion in electromagnetic nucleus-nucleus collisions at LHC energies.
- Note: for pure $q\bar{q}$ the cross section is strongly higher!

Results for PbPb collisions at LHC

- We get a parameterization of the ultraperipheral AA cross section as a function of the resonance mass at the LHC.
- This makes simple the computation of event rates provided the specific meson state and its two-photon decay width.
- In the interval $400 \le M_R \le 4000$ MeV we obtain:

$$\frac{\sigma_{\rm upc} \left(AA \to R_J + AA\right)}{\left(2J+1\right)\Gamma(R_J \to \gamma\gamma)} = \frac{\sigma_0 M_R^\beta}{1 + \left(M_R/4\right)}$$

• Here, $\sigma_0 = 4.9147$ mb/GeV and $\beta = -3.45335$; $\Gamma_{\gamma\gamma}$ and M_R are the decay width and the resonance mass in units of GeV, respectively.

Summary and comments

- Present calculation is an upgrade to previous estimates in AA collisions (new for Pomeron-Pomeron channel).
- To be considered only order of magnitude estimate.
- Experimental separation between the channels photon-photon and Pomeron-Pomeron has to be refined (e.g., p_T cuts for produced particles).
- Several uncertainties: e.g., model dependence in obtaining the two-photon and the two-gluon widths for a pure glueball meson.
- The γD (photon-Odderon) channel contribution is currently unknown.