

Advancement and Innovation for Detectors at Accelerators

WP9: Cryogenic Neutrino Detectors

(4th Annual Meeting)

Dario Autiero (CNRS-IP2I) and Andrzej Szelc (Edinburgh)

WP9: Cryogenic Detectors

- WP9: Cryogenic neutrino detectors
- Focus on innovative developments in large cryogenic detector readout:
 - Charge readout with pixels
 - Charge readout with vertical-drift detectors
 - Readout of scintillation light.
- Applications geared towards DUNE and large-scale DM detectors.

LArTPC operation (in a nutshell)

- Excellent
 position
 resolution +
 calorimetry and
 particle ID
- lonization is primary signal.
- Scintillation light can provide additional information (timing, calorimetry, position)

Where is the catch(es)?

- HD module has 150 APA modules.
- APA module is 6m x 2.5m and has ~3500 wires.

- Argon VUV light absorbed by most materials.
- APA geometry limits photon-detector size (PMTs not possible)
- Would like high light yield, but detector size means large number of channels needed

Work Packages and objectives

- Task 9.1: Coordination and Communication (CNRS-IP2I, Edinburgh)
- Task 9.2: Pixel Charge Readout (Manchester-> Imperial, Bern)
 - Optimized pixel tile pattern for the DUNE LAr far detector
 - Design and prototype for large scale tile-based anode plane
- Task 9.3: Vertical Drift Charge Readout (CNRS-IP2I, CNRS-IJCLab, CNRS-LAPP)
 - Novel Vertical Drift perforated anodes charge readout design evolving from the dual-phase charge readout stack
 - Development and tests of novel design of the Charge Readout Plane (CRP) integration surface of the Vertical Drift perforated anodes
 - Developments and tests of integrated cold electronics, new feedthrough chimneys design
 - Developments in associated digitization hardware and online data treatment
- Task 9.4: Light Readout (CIEMAT, INFN-MIB, Edinburgh)
 - Characterization of new photon detection methods, calibration devices and readout electronics
 - Implementation and characterization of a more efficient light collection system in NP02/ProtoDUNE phase II (Xe doping and Wave-Length Shifting (WLS) combined with reflective foils)
 - Dissemination of R&D results and NP02/ProtoDUNE II light-collection performance (web site)

WP9: Cryogenic Detectors

DUNE (has entered a new phase!):

Caverns excavation completed in January 2024:

https://news.fnal.gov/2024/02/excavation-ofcolossal-caverns-for-fermilabs-dune-experimentcompleted/

- Since 2024 we are in the construction phase for the DUNE far detectors (started the production of many of the components covered by WP9 in tasks 9.3 and 9.4)
- Successful run of ProtoDUNE-HD last summer, ProtoDUNE-VD filled in January 2025, and will take beam soon.
- SBND filled and taking data (relevant to parts of task 9.4)

Parallel Session yesterday

	WP9 Introduction	Andrzej Michal Szelc et al.
	Slovanka 117 , FZU	10:20 - 10:30
	Status of SoLAr and Pixel R&D	Dr Anyssa Navrer-Agasson
	Slovanka 117 , FZU	10:30 - 10:55
11:00	Coffee Break	
	Kochanovska hall B, FZU	11:00 - 11:20
	Vertical Drift development overview.	Dario Autiero
	Slovanka 117 , FZU	11:20 - 11:45
	Light Collection R&D at Milano Biccocca	Carla Maria Cattadori
12:00	Slovanka 117 , FZU	11:45 - 12:05
	Large-scale WLS Development	Andrzej Michal Szelc
	Slovanka 117 , FZU	12:05 - 12:25
	Light Collection R&D at CIEMAT	Ignacio Lopez De Rego
	Slovanka 117 , FZU	12:25 - 12:40

- Talks from all three tasks.
- Lots of impressive progress.
- Can only show a fraction/highlights please look at talks for more details.

Pixels charge readout [T:9.2] (UNIMAN->Imperial, UBERN)

Talk by:

Anyssa Navrer-Agasson

Intro to pixels

Idea: replace wires with pixel-pads

- Reconstruction less complicated
- Many more readout channels

LArPix

- Self triggered digitisation and readout
- Technology demonstrated in ArgonCube
- Available now
 - Used for first prototypes

32 cm by 32 cm anode PCB tile

<u>Q-Pix</u>

- Developed to solve the data rate issue of pixellated readouts
- Electronic principle of least action
- Saves time stamps instead of full waveforms

- Each channel integrates
 Charge Integrate Reset circuit
- Resets when charge > $\Delta Q/C_f$
- Measure reset times with embedded clock

SoLAr concept

A method to simultaneously readout charge and light. In-built improvement of:

- triggering
- energy resolution
- obackground rejection:

- New generation SiPMs needed:
 - Detect photons at LAr scintillation wavelength (VUV):
 - Hamamatsu 4th generation MPPC
 - FBK VUV-HD technology

Pixels charge readout [T:9.2] (UNIMAN, UBERN)

- First SoLAr dual-pixel readout Protoype at Bern Oct 22
- Dimensions of the TPC: 12cmx10cmx5cm
- Active area of readout plane 7cmx7cm
- Drift distance ~5 cm

Pixels charge readout [T:9.2] (UNIMAN, UBERN)

- •V2 prototype (July 2023)
- 30x30x30 cm³ volume
- 20 LArPix chips
- 64 Hamamatsu VUV SiPMS
- 10 days of data taking
- Cosmic rays + ⁶⁰Co
- Partially Instrumented pixel tile

ArgonCube cryostat

Hit map shows location of disabled pixels

Pixels charge readout [T:9.2] (UNIMAN, UBERN)

Charge+light display

Established preliminary charge-light correlation. Analysis being finalized.

Simulation for potential DUNE FD module advanced, using D9.1 - Large Scale Pixel Anode design.

Towards a medium-scale demonstrator

Next stage: operate a \mathcal{O} (10) ton detector underground

Boulby Laboratory (UK) a possible site. Other options being considered.

Science goals

- Validate SoLAr performance
- Observe ⁸B flux with > 5 σ significance
- Estimate sensitivity to solar neutrinos for Module of Opportunity

Possible design:

- 1.6 x 2.6 x 2 m³ (1 m drift length)
- 31 x 31 cm² tiles
- · Light traps on 4 sides of the TPC

Also an opportunity to be part of a future ProtoDUNE run

- 10-ton scale prototype proposed for Boulby (proposal submitted in May 24).
- Not funded.

Vertical Drift charge readout [T: 9.3] (CNRS-IP2I, CNRS-IJCLab, LAPP)

Talk by Dario Autiero

The DUNE Vertical Drift FD module

Vertical Drift: novel and optimized LAr TPC technology, anodes based on segmented perforated PCB

VD is now scheduled as the 1st DUNE FD to be installed.

Intense Activity of R&D and tests

CRP Cold-box at CERN demonstrated performance

Reliable and stable operation during the full CRP Cold-Box runs with good noise

Calorimetry through time

Stability of dE/dx response studied on **CRP1** October2021-June 2022

- Large cosmic data samples (~M events per test) collected in stable operation. Systematic investigation of external coherent noise sources (PD, instrumentation)
- Remarkable reproducibility of calibration data taken for CRP2/3/2 (1%) with 2.5% response spread among different channels

 Signals reproducibility confirmed in physical response to cosmic tracks (dQ/dx) from offline analysis of CRP data

AIDA

Switching mode to production

Readout System for the top-drift volume of FD2-VD 80 CRP, 3072 channels/CRP, 246k total channels

Elements needed to be installed on FD2-VD (production 2024-2026):

 3840 cryogenic FE boards (64 channel with 15360 ASIC 16 channels amplifiers

48 Cards SFT

24 Cards SFT

3840 AMC (64 channels)

320 WR-MCH

16.10.23

Production activities for FD-VD in progress (started in 2024)

- Cryogenic ASICs production completion with AMS
- AMC boards and microTCA crates
- Frond End analog boards
- Chimneys
- **CRP** structures

22

Module-0 (ProtoDUNE-VD)

- Module-0/ProtoDUNE Vertical Drift: last Vertical Drift integration exercise before 2nd DUNE
 FD module construction -> completed in June 2023
- Detector has been filled (end of 2024), will take beam later this year.
- Main applications for reconstruction studies/development of cosmic and charged beam.

Light Readout [T:9.4] (CIEMAT, INFN-MIB, UEDIN)

Talks by:

<u>Carla Cattadori</u>

<u>Ignacio Lopez de Rego</u>

<u>Andrzej Szelc</u>

Common solutions in LAr Light Readout

Ideas:

- Use light collectors (trapping photons)
- Use wavelength-shifters to transform light to visible

TPB emission and absorption spectra and argon scintillation '04/23 peak [1] 3

Above: PEN molecule; below: PEN sheets

ó

Tests of ProtoDUNE X-ARAPUCAS

	Dichroic Filter		Non-Dichroic Filter			
	Single-Sided	Double-Sided	Single-Sided	Double-Sided	Single-Sided	
OV	1. DF-XA	2. DF-XA-DS	3. noDF-XA	4. noDF-XA-DS	5. noDF-XA_24mg	
4.5	(3.7 ± 0.3) %	(4.0 ± 0.4) %	(4.5 ± 0.4) %	(4.5 ± 0.4) %	(4.3 ± 0.4) %	

Conclusions:

- Compatible performance of single vs. double-sided XA configs.
- Improvement 18% (single-sided) & 11% (double-sided) when removing dichroic filters due to non-ideal entrance transmittance and shifting cut-off for different angles.

Light trigger and new monochromator

Grating selection

Wide range of wavelengths available. First tests in progress.

First
scintillation
light triggers
algorithms
developed and
tested in
ProtoDUNE-HD

Campaign to improve X-Arapuca efficiency

New WLS – lightguide material New optical sealing Modified bar geometry.

Result modified PDE from 2% -> 4.5%

HPK-G2P Vs FBK-Eljen

2²/ndf 11.16/9
FE mean value 1.929±0.03899

π²/ndf 7.393/11
HG mean value 2.558±0.04646

HPK-G2P
FBK-Eljen

1.5
0 5 10 15 20 25 30 35 40 45
Position [cm]

Applied also to HD detectors.

detection efficiency doubled! Improved

resolution.

X-ARAPUCA WLS bar selection

- DUNE FD1 XA baseline design
- p-DUNE WLS no optical sealing, ZAOT DF
- p-DUNE WLS w. optical sealing, ZAOT DF
- WLS with cut & optical sealing, ZAOT DF

In parallel, tests of PEN as WLS for future large-scale applications.

First tests show ~ 44% of the XA BL design (pTP & Blue WLS)

consistent with other measurements.

HPK G2P - Resolution

Large-scale WLS for neutrino detectors

- SBND @ FNAL is running. Equipped with 38² m of TPB-coated foils. Mature simulation and reconstruction allows development of new applications demonstrated drift position reconstruction.
- PMT calibration enabled PMT setup. First glance shows WLS working.
- In parallel test @CERN, 4m² of PEN.
- Tested stability on weektime scale. Efficiency ~47% of TPB.

Eur. Phys. J. C (2024) 84:1046

<u>ArXiv:2411.17934</u>

Deliverables/Milestones

Milestones

MS#	Milestone Name	Lead beneficiary	Due Date (in months)	Means of verification
MS36	Pixel optimisation	40 - UNIMAN	23	Report (Task 9.2)
MS37	Status report on chimneys	8 - CNRS	22	Report (Task 9.3)
MS38	Status report on CRPs	8 - CNRS	23	Report (Task 9.3)
MS39	Status report on digitisation	8 - CNRS	33	Report (Task 9.3)
MS40	Large-scale WLS surfaces and SiPMs Tested	21 - INFN	22	Report (Task 9.4)

Foreseen detector developments successfully completed – excellent results from various tests are having an impact on the final detector configuration for DUNE

Switching to production mode.

Deliverables

D #	Deliverable Name	Lead beneficiary	Туре	Due Date (in months)
D9.1	Large-scale Pixel Anode	40 - UNIMAN	Report	44
D9.2	Vertical Drift chimneys, digitisation, CRPs	8 - CNRS	Report	46
D9.3	R&D in LAr optical readout	29 - CIEMAT	Report	45

New collaborations enabled by AIDAInnova

All WP 9 milestones completed. Deliverables 9.1 and 9.2 completed. 9.3 extended until end of May.

Conclusions

- AIDAInnova activities have resulted in excellent progress in developing cryogenic neutrino detectors.
- Milestones completed. Final deliverable due end of May (extended)
- New ideas/collaboration formed thanks to AIDAInnova
- Highlights of the WP:
 - •New concept of combined pixel charge + light readout
 - Fully developed and tested design of the VD readout for the DUNE FD module.
 - Facilities and extensive tests of the various flavours of the DUNE light detectors.
 - •2x Improved DUNE Light Detection efficiency.
 - Demonstration of light-only drift position reconstruction.
- We learned a lot and achieved a lot.