

Advancement and Innovation for Detectors at Accelerators

WP4 Upgrade of Irradiation and Characterization Facilities

Fernando Arteche (ITAINNOVA), Federico Ravotti (CERN)

AIDAinnova Final Meeting - Plenary Session, Prague (Czech Republic), May 8th, 2025

Outline

- Introduction to WP4
 - Goal, Structure, Partners, Summary of MS & D, etc.

- WP4 Parallel Session Summary
 - Task-by-task review (focusing on achievements)

Highlights & Achievements

Conclusion

WP4 Goal

- Irradiation and characterization tests required for the R&D on next generation of particle detectors demand more accurate and reliable procedures, as well as a higher efficiency in their execution
- The main goal of WP4 is to develop & standardize common tools for testing to ensure the readiness of the detector support infrastructure for high TRL levels:
 - > Improve facilities, systems and methods
- The activities are covered by different partners:
 - Academia
 - Industry
 - Research and Technology Organizations (RTOs)

WP4 Structure & Partners

- Task 4.1: Task Coordination (CERN, ITAINNOVA)
- Task 4.2: Micro-beam Upgrade at RBI Accelerator Facility (RBI)
- Task 4.3: Common Tools for Irradiation Facilities QC: Data Management, Traceability, Dosimetry and Activation Measurements (CERN, MINES(*), INFN, ENEA(*), CAEN)
- Task 4.4: Design & Development of a New Sensor Characterization System based on TPA-TCT Technique (CERN, CSIC-IFCA, FYLA)
- Task 4.5: Design & Development of a New Electronics Characterization System for EMC Control (ITAINNOVA⁽⁺⁾, CNRS-IPHC)

- (*) Collaborating Institute
- (+) RTO

WP4 Milestones

Milestone or Deliverable	Description	Lead Beneficiary	Month		
Task 2	Micro-beam upgrade at RBI accelerator facility (RBI-AF)				
MS12	Upgrade RBI-AF infrastructure for detector characterisation, SEE, micro hardness testing	RBI	<u>M23</u>		
D4.1	Integrate the data acquisition and control system at RBI-AF	RBI	<u>M40</u>		
Task 3	Common tools for irradiation facilities Quality Control: Data Management (DM), Traceability, Dosimetry and Activation measurements				
MS13	Define requirements, global architecture and design the extended DM system for ENEA-FNG and CERN-GIF++	CERN	<u>M18</u>		
MS14	Extend IDM for FNG, GIF++ and communication with CAEN DigiWaste and CANBERRA Apex-Gamma Platforms	CERN	M36		
MS15	Test RFID tagging for irradiation facilities	INFN	<u>M42</u>		
D4.2	Evaluate Non-Ionizing Energy Loss (NIEL) of irradiation facilities with dedicated dosimeter structures	CERN	M42		
D4.3	Deploy full prototype for irradiation facilities data management with sample tagging and spectrometry features	CAEN	<u>M45</u>		
Task 4	Design & Development of a new sensor characterization system based on TPA-TCT technique				
MS16	Commission a complete TPA-TCT system	FYLA	<u>M23</u>		
D4.4	Support the implementation of TPA-TCT systems and contribute to the evaluation of new sensors technologies	CERN	<u>M46</u>		
Task 5	EMC Characterization				
MS17	Apply TF test bench to FEE prototypes	ITAINNOVA	<u>M23</u>		
D4.5	Develop a conductive noise test bench for irradiation facilities	ITAINNOVA	<u>M44</u>		

- 6 Milestones (MS): M18 M42
 - all achieved (last one, MS15 in Sep. 2024)

WP4 Deliverables

Milestone or Deliverable	Description	Lead Beneficiary	Month		
Task 2	Micro-beam upgrade at RBI accelerator facility (RBI-AF)				
MS12	Upgrade RBI-AF infrastructure for detector characterisation, SEE, micro hardness testing	RBI	<u>M23</u>		
D4.1	Integrate the data acquisition and control system at RBI-AF	RBI	M40		
Task 3	Common tools for irradiation facilities Quality Control: Data Management (DM), Traceability, Dosimetry and Activation measurements				
MS13	Define requirements, global architecture and design the extended DM system for ENEA-FNG and CERN-GIF++	CERN	<u>M18</u>		
MS14 MS15	Extend IDM for FNG, GIF++ and communication with CAEN DigiWaste and CANBERRA Apex-Gamma Platforms Test RFID tagging for irradiation facilities	CERN INFN	M36 M42		
D4.2	Evaluate Non-Ionizing Energy Loss (NIEL) of irradiation facilities with dedicated dosimeter structures	CERN	M42		
D4.3	Deploy full prototype for irradiation facilities data management with sample tagging and spectrometry features	CAEN	M45		
Task 4	Design & Development of a new sensor characterization system based on TPA-TCT technique				
MS16	Commission a complete TPA-TCT system	FYLA	<u>M23</u>		
D4.4	Support the implementation of TPA-TCT systems and contribute to the evaluation of new sensors technologies	CERN	<u>M46</u>		
Task 5	EMC Characterization				
MS17	Apply TF test bench to FEE prototypes	ITAINNOVA	<u>M23</u>		
D4.5	Develop a conductive noise test bench for irradiation facilities	ITAINNOVA	<u>M44</u>		

• **5 Deliverables** (D): M40 – M46

- **D4.1 achieved** in M40 (Jul. 24)
- D4.2: M42 (Sep. 24), postponed to M45 (Dec. 24) → M52 (Jul. 25) [draft report exists]
- D4.3: M45 (Dec. 24), extended to M52 (Jul. 25)

- D4.4: M46 (Jan. 25), achieved in M48 (Mar. 25) [report submitted]
- D4.5: M44 (Nov. 24), postponed to M51 (Jun. 25) but already achieved [report submitted]

AIDA Task 4.1: WP Coordination

- 16 publication records for WP4 in Zenodo
 - 9 other than MS/D reports (articles, etc.)
 - + (at least) 2 in the pipeline
- Monday afternoon <u>WP4 session</u>:
 - 16 participants at maximum (+ 6 via Zoom)
 - review of (basically all already completed) tasks

WP4.1: Introduction by WP Coordination	
	Federico Ravotti et al.
Slovanka Dvorak hall, FZU	14:30 - 14:40
WP4.3 - Common Tools for Facilities QC: Data Management, Traceability & Activation Me	eas. Dr Ferdinando Giordano
Slovanka Dvorak hall, FZU	14:40 - 15:00
WP4.3 - Common Tools for Facilities QC: Dosimetry (NIEL project)	Michael Moll
Slovanka Dvorak hall, FZU	15:00 - 15:10
WP4.4 - Design & Development of a New Sensor Characterization System based on TPA	-TCT Technique Michael Moll
Slovanka Dvorak hall, FZU	15:10 - 15:40
Coffee break	
Bar 1st floor	15:40 - 16:20
Bar 1st floor WP4.2: Micro-beam Upgrade at RBI Accelerator Facility	15:40 - 16:20 Georgios Provatas et al.
WP4.2: Micro-beam Upgrade at RBI Accelerator Facility	Georgios Provatas et al.
WP4.2: Micro-beam Upgrade at RBI Accelerator Facility Slovanka Dvorak hall, FZU	Georgios Provatas et al. 16:20 - 16:50
WP4.2: Micro-beam Upgrade at RBI Accelerator Facility Slovanka Dvorak hall, FZU WP4.5 - Design & Development of a New Characterization System for EMC Control	Georgios Provatas et al. 16:20 - 16:50 Fernando Jose Arteche Gonzalez
WP4.2: Micro-beam Upgrade at RBI Accelerator Facility Slovanka Dvorak hall, FZU WP4.5 - Design & Development of a New Characterization System for EMC Control Slovanka Dvorak hall, FZU	Georgios Provatas et al. 16:20 - 16:50 Fernando Jose Arteche Gonzalez 16:50 - 17:20

W4.3 – Obj. 3

zoom

🗖 zoom

Task 4.2: Micro-beam upgrade at RBI accelerator facility

The RBI-AF: Laboratory For Ion Beam Interactions

Task 4.2: Micro-beam upgrade at RBI accelerator facility

The RBI microprobe

Dual Microprobe

CIRC

Upgrades during AIDAinnova

- Beam spots down to 120 nm
- Precise irradiations from low (few Hz) to high current (nA) modes.
- Scanning and imaging possibilities of areas up to several cm.
- In-house DAQ Software SPECTOR.
- Target positioning using nm precise piezo-stages.
- Alignment of samples for angular resolved studies/channeling.
- Available temperatures from <40K up to 1000 K
- Probing and damaging using two simultaneous microbeams

Upgrades achieved early in the project (M40)

Task 4.2: Dual Micro-beam Upgrade Example

Task 4.2: Micro beam upgrade at RBI accelerator facility

→ Upgrade the two existing ion micro-beam end stations

→ Upgrade of microprobes with precise target positioning systems

Sample cooling option for the old microprobe

Present target positioning in DuMi

Bigger small piezo-stage:

Travel range: 100x100x50 mm

Payload: 5 N

Resolution: 1 nm

In 2021 target positioning With small piezo-stage:

Travel range 10x10x5 mm

Developed StepMotion software incorporated in SPECTOR

Task 4.2: Dual Micro-beam Upgrade Example

Task 4.2: Micro beam upgrade at RBI accelerator facility

Upgrade the two existing ion micro-beam end stations

Upgrade of microprobes with precise target positioning systems

Sample cooling option for the old microprobe

Addition of 2 axis rotation piezo-stage

Ion Beam Induced Charge (IBIC) microscopy for detector testing and characterization

Development of Channeling-IBIC technique (G. Provatas – RBI)

Diamond membrane detector alignment in channeling mode. In the basis of pulse height. Less than 10⁶ ions are enough to align the crystal to the beam axis. **Non-destructive channeling.**

Task 4.2: Achievements

Upgrades performed within AIDAinnova significantly improved testing capabilities at RBI-AF:

Time for sample precise positioning and micro-analyses on areas of interest is significantly decreased;

IBIC maps of detectors larger than the max beam scan size (10x bigger range) can now

be easily obtained;

Precise irradiations can be carried out at well defined detectors positions (ex. nanowires-probing was not possible before!, etc.);

- Patterning on position sensitive detectors;
- IBIC cryogenic studies down to <40k (recently also down to 9k!)

The future of RBI microprobes

Moving to the new site starts in Summer 2025!

New 5MV tandem accelerator.

New possibilities in the new laboratory:

- New highest energy 10 MeV for protons. Deeper penetration up to ~mm in Silicon
- In air beam spots of 1um will be achieved.
- Collimated microbeams obtained from the 200 kV implanter. IBIC with 50 keV ions

Task 4.3: Common Tools for Irradiation Facilities QC: Data Management, Traceability, Dosimetry, Activation Measurements

- **Objective 1** *Generalization of the IRRAD Data Manager* (IDM) including new facilities & improving data sharing:
 - Define requirements and architecture (MS13)
 - Extend IDM to new facilities and enable data exchange with traceability & spectrometry systems (MS14)
- **Objective 2 -** Development of an integrated system prototype for induced activation & traceability data management:
 - Test various types of RFID tags (MS15)
 - Deploy a full prototype of data management system at the new ITA facility at FNAL (D4.3)

Detector development, irradiation, characterization (CH)

Irradiation/testing of electronics (IT)

Electronic Instrumentation for Nuclear and PP (IT)

- Objective 3 Produce a common NIEL dosimetry calibration set for facilities cross-comparison:
 - Evaluate the NIEL of irradiation facilities with dedicated dosimeter structures (D4.2)

Data management SW, ontologies and ML (FR)

Task 4.3-1: Data Manager (DM) Extension for New Facilities

Successful deployment of an instance of IDM also at FNAL (new testing facility)

Task 4.3-2: Induced Activation & Traceability Management in IDM

- CAEN RadHAND device delivered and being tested at FNAL
- RadBASE interface configured with new location
- Several **DB items created** by the FNAL colleagues recently

List of locations

Task 4.3-2: Induced Activation & Traceability Management in IDM

- RadHAND measurements at FNAL successfully synchronized with IDM application!
- We continue collaborating with FNAL to further validate our platform: testing is scheduled to conclude in the coming weeks, to ensure the timely submission of the D4.3 report (June 2025).

Task 4.3-3: Dosimetry cross-comparison (NIEL calibration set)

• NIEL sensors:

- Produce a set of identical pin sensors that will be used to:
 - (a) study more profoundly the NIEL Hypothesis in dependence of particle type / energy
 - Measurement of damage parameters: Diode (leakage, depletion) & material (defect spectroscopy)
 - (b) inter-compare radiation facilities in terms of their 'hardness factors'
 - Measurement of leakage current after exposure and specified annealing [alpha-value]

A set of Silicon Sensors (n-in-p) has been produced at CNM, Barcelona:

- Cost effective production:
 - use of existing mask set with one new mask
 - simple design: 8 mask levels (150 mm wafer)
- 536 devices of 3.3x3.3 mm² per wafer
- 10 wafers ordered (2 broken during production)
 - 1.5 wafers will go to Ljubljana reactor
 - 1.5 wafers will go to CERN IRRAD
 - 5 wafers for in-depth NIEL studies
- Status: production finished in early 2025
 - Wafers at CERN for testing before distribution

Task 4.3-3: Dosimetry cross-comparison (NIEL calibration set)

Sensor characterization

Foto of frontside of the wafer (150 mm)

Leakage current as measured on wafer 4 at CNM

- Measurement after dicing at CERN shows lower current when guard ring connected to ground
 - Sensors can be used as dosimeters (NIEL measurement)

Task 4.3-3: Dosimetry cross-comparison (NIEL calibration set)

• Task achievements:

- Geant4 and FLUKA simulations for NIEL curves successfully reproduced and algorithm for identifying clustered vs point defect damage implemented
- Benchmarking simulations with measurements data is ongoing and will continue beyond AIDAinnova also using this calibration set

V. Subert PhD Thesis
(synergy with EP-RD)

EP R&D

Deliverable D4.2:

- Deliverable date was postponed from M42 to M52 due to delayed sensor production
- Cost effective solution for production of silicon sensors for NIEL measurements was found and production was completed; First measurements confirm that sensors can be used for dosimetry
- Distribution of sensors in May/June to irradiation facilities (IRRAD, JSI)
- Deliverable report in writing and to be timely submitted

Task 4.4: TPA-TCT System Development Development

- Proof of concept, demonstration of 3D resolution and feasibility to study irradiated sénsors
- **2017: CERN KT-fund** approves & funds a project to develop a table-top TPA-TCT system

08 May 2025

2017-18: development of specs, discussions with laser experts, market survey,

• 03/2018 Call for Tender 06/2018 Order to Fyla

- 10/2019 power cut damages laser, repair
- 12/2019 replacement of components
- 07/2020 power stability issues detected, laser returned to FYLA, upgraded
- 01/2021 new generation prototype delivered to **CERN**; since then: data taking

Fyla LFC1500X

AIDAinnova WP4.4

further improvements & user community system development & all fiber laser system

Task 4.4: TPA-TCT Systems

TPA-TCT systems have been set up at several institutes

The new AIDAinnova TPA-TCT laser (see following slides) has been distributed as well

21

Task 4.4: TPA-TCT New System PULSAR (Laser Improvement)

Status 2025

- The new "Pulsar" laser system is commercially available at Fyla
 - The system fully integrates the laser pulse source (LPS), the pulse management module (LPM) and the dispersion compensation module (D-scan) in a single box component
 - The system presents better robustness and stability in optical and temporal properties compared to the previous laser system.
 - It provides beam delivery through several meter of hollow core optical fibres (Kagome fibres) preserving the pulse shape during propagation.
 - The coupling efficiency into the fibre is ~70%.

"Pulsar" system specifications

- LPS: Laser Pulse Source
 - All-fiber CPA femtosecond pulses generation
 - Pulse rep rate selection. 1 Hz to 10 MHz
- LPM: Laser Pulse Management module
 - Pulse energy modulation: 10pJ to 10nJ
 - Synchronized shutter, rise/fall time < 1µs
- D-SCAN: Dispersion scanning

08 May 2025

- Pulse duration tuning: 300fs to 600fs
- Pulse temporal properties characterization

Pulsar laser system

AIDA Task 4.4: TPA-TCT Community

- Several measurement technique improvements & application examples presented
 - Many tests performed for the community with the available test-benches!
- The **examples below** show the probing of the top side metals of monolithic detectors. Regions with metal have an increased charge collection due to reflection:
 - Features in the μm scale are well resolved (~60 x 60μm pixels)!

Task 4.4: TPA-TCT School

• THE FIRST DRD3 AND AIDAINNOVA TCT SCHOOL [web-site]

- Participants:
 - 12 lecturers, tutors, organizers
 - 18 participants (selected out of >50 applications)
 -from 13 different countries
- Hands-on training
 - 6 groups of 3 students worked hands-on guided by tutors on different laser-setups

photos available on CERN CDS: http://cds.cern.ch/record/2925863

Task 4.4: TPA-TCT Achievements

TPA-TCT technology:

- Advancements in methodology, analyses and simulation; documented in publications and MS16 and D4.4 report already achieved
- Wide range of use-cases demonstrates the usefulness of this new-technology
- Extension towards other than silicon devices (SiC, Diamond, ...)

• Laser system development:

New, more compact and stable, "Pulsar" laser commercially available

User community:

- TPA-TCT lasers delivered by Fyla: "LFC1500X" at CERN, IFCA (ES), JSI Ljubljana (SI), NIKHEF (NL), Lancaster (UK); "Pulsar" at Oxford (UK); Support provided for setting up systems at the institutes
- Established a school on TCT that will be continued in framework of DRD3 collaboration

Outlook:

- TPA-TCT common effort presented as example for collaborative efforts for new R&D collaboration (DRD3) in ECFA Detector R&D roadmap implementation plan.
- Consortium will continue work on the technology (if possible, in the framework of follow-up EU-project)

Task 4.5: Design & development of a new characterization system for EMC control

- <u>Goal:</u> upgrade Electromagnetic Compatibility (EMC) tests in order to improve the support for detector electronics designers.
 - Noise studies were greatly demanded on previous AIDA 2020 project

Activities:

- Design and develop an automatic EMC test bench to measure the noise transfer functions (TF) of physics detectors.
- Design and develop a portable test bench to perform in-situ EMC conducted emission measurements of power units in irradiation facilities.

Innovative Approach:

Introducing unique systems for measuring detector Transfer Functions (TF) against electromagnetic noise and a novel portable test bench for on-site noise emission assessments of DC-DC converters and small power units

Task 4.5.1: Automatic noise TF measurement system

- This activity is completed
 - **MS17** completed & submitted
- The system is being used regularly today EUROLABs project

Task.4.5.2 Portable noise innova measurement system for Facilities

- Final validation took place during a radiation campaign at IPHC-CNRS in Strasbourg.
- The test aimed to verify system performance, robustness, and stability under real irradiation conditions.

- A GaN-based DC-DC current source, developed by ITAINNOVA, was used as the device under test (DUT).
- The system successfully captured realtime conducted noise emissions from the DUT during irradiation.

Task 4.5: Design & development of a new characterization system for EMC control

- WP4.5 activities have been completed
 - New TF measurement system for particle detectors.
 - > A portable test bench for power supply noise emission measurements.
- All milestone and deliverable have been completed
 - MS17 completed and submitted
 - D4.5 completed (ahead of schedule!) and under review
- **Excellent collaboration between IPHC Strasbourg** ITAINNOVA, with active involvement from both teams in all phases of the project
- The updates developed in this project have already been used by users in the EUROLABS project
- These updates are ready to support DRD activities

Highlights & Achievements

> Task 4.2:

• Micro-beams upgrade at RBI accelerator facility fully completed. Variety of application examples showed the testing capabilities of the micro-beams are significantly improved.

> Task 4.3:

- IRRAD Data Manager System (IDM) extended with new features and for new facilities; prototype of the integrated RFID-based system CAEN DigiWaste platform operational: deployed at CERN-IRRAD and being validated also at FNAL-ITA → report M52
- NIEL calibration set produced, received at CERN, successfully characterized and soon being distributed to facilities → report M52

Task 4.4:

Advancements in TCT-TPA methodology, analyses and simulation. New, more compact and stable, "Pulsar" laser commercially available. Several TPA-TCT lasers delivered by Fyla. Support provided for setting up systems and performing measurements. Established a school on TCT.

> Task 4.5:

Both new EMC test-benches were developed. The portable test-bench for in-situ EMC measurements of power units in irradiation facilities is now also validated. These upgraded tools are now been regularly used by users in the EUROLABS project.

Conclusions

- The WP4 goal to develop & standardize common tools for testing infrastructure was reached for all tasks:
 - All technical work completed
 - Project extension was profitable to fully complete/extend validation & testing
 - Last two reports (D4.2, D4.3) will be delivered to meet the extended deadline
- The collaboration with industrial partners within WP4 proved to be key ingredient for success. Excellent feedback received from all participants with companies deeply engaged in task development
- Implemented updates have already yielded positive results, enhancing user testing efficiency, providing access to novel data and some being regularly used (also via other access programs)
- WP4 is completed! We would like to thank all WP4 participants, the AIDAinnova management and we already look forward to continue working together in a possible follow-up project!