

THE FIRST CYCLOTRON-BASED MULTI-ION THERAPY SYSTEM PROJECT STATUS, PERSPECTIVES AND CHALLENGES

Authors

<u>V. Letellier¹</u>, <u>P. Velten¹</u>, L. Maunoury¹, O. Cosson¹,

J. Mandrillon², G. Gérard², M. De Leenheer¹, G. Saive¹

¹ NHA – Normandy Hadrontherapy – 1 rue Claude Bloch, 14000 Caen - France

² IBA – Ion Beam Applications - 3 chemin du Cyclotron, 1348 Louvain-la-Neuve- Belgium

Philippe Velten Knowledge Transfer Seminar CERN, 21-23th of January 2025

Disclaimer

PROPRIETARY INFORMATION

THE INFORMATION CONTAINED IN THIS DOCUMENT IS CONFIDENTIAL AND IS THE EXCLUSIVE PROPERTY OF IBA S.A. AND NHA. THIS IS SHARED FOR INFORMATION PURPOSES ONLY. THE REPRODUCTION, TRANSMISSION OR USE OF THIS INFORMATION IS FORBIDDEN, UNLESS PRIOR WRITTEN PERMISSION OF IBA AND NHA IS PROVIDED.

This document may contain express or implied forward-looking statements, opinions, expectations or analysis (the "Statements"). The Statements are subject to a variety of risks and uncertainties, many of which are beyond IBA's or NHa's control, and some of which could cause actual results that differ materially from those contemplated in the Statements. IBA and Nha assumes no obligation nor makes any warranty or commitment with respect to the Statements.

Due to a continuous research and development program and due to the fact that the Heavy Ion system is under development, IBA and NHa cannot provide a guarantee that every technical specifications given in this document will be in accordance with the developed product. IBA and NHa reserve the right to make changes in design, technical descriptions and specifications of its products without prior notice. The Heavy Ion system is also subject to review by competent authorities (FDA, notified bodies, etc.).

Layout of the presentation

- 1. The clinical context
- 2. Presentation of the C400IONS
- 3. Recent developments: design & production
- 4. Installation status

Source: ¹ SEER database / Ahern et al., 2023 ² IARC ³ PTCOG

So about 200 000 to 800 000 new patients per year

based on the 19M to 28M new cancer incidence worldwide in 2022 and 2040 respectively²

Less than 7 000 patients (0,04%) were treated with carbon in 2023³

Let's bridge the PT gap

Estimated number of patients who may benefit from carbon ion radiation therapy is about 1-4% of new cancer cases ¹

Ranking of cancer, 30-69 years old

No data Not applicable

1st (55) 2nd (79) 3rd - 4th (45) 5th - 6th (4)

Operational Ion Therapy around the World

1st C400 IONS INSTALLATION at Cyclhad 100 proton therapy centers 30 under construction 16 ions therapy centers (about 30 rooms) \checkmark 4 under construction 700 centers (roughly 1400 rooms) would be needed to treat 1% of the incidence Assumption of 350 patients treated per year per room **9** proton therapy centers **?** ions therapy centers

Why Ion Beam Therapy?

Sharper dose distribution

Why Ion Beam Therapy?

©2024 Normandy Hadrontherapy – Confidential & Proprietary

Possible Indications

The C400 IONS project

Bring all the advantages of the cyclotron-based PT system to hadrontherapy, starting with Carbon and Helium beams

Strong points of cyclotrons technology relative to existing solutions:

Continuous beam

Easier beam delivery

Compact layout

A factor ~3 in footprint layout compared to current synchrotron-based systems

Simple system

- > Less equipment, less complex magnet, no injector, etc.
- ➢ Fixed B-field, fixed RF

Cost efficient

Easy to maintain

expect ~15 technicians for site maintenance (3 rooms)

High beam current

- Interesting opportunity for FLASH and minibeams
- Technology very well known and mastered
 - C400 developed in close collaboration with IBA (>600 accelerators, incl. >70 PT solutions, 120000+ patients treated worldwide)

NHa in few words

- Designs and produces its own C400 IONS treatment system
- Designs the superconducting cyclotron 400MeV/u
- Designs the treatment rooms with fixe beamline / couch / chair
- Markets the C400 IONS treatment system

- Accelerators technology is IBA's DNA
- Supports design of the C400 heavy ion cyclotron and beamline
- Treatment room equipment based on IBA software and hadware
- Supports market the new heavy ion system

Bunker ceilina open for the riaging of the C400 in 2024

Multi-particles – fixed beam treatment room

- o Taking advantage of know-how and experience from IBA
- High performance beam delivery and dosimetry:
 - Pencil beam scanning technology
 - □ 6D PPS robotic system
 - □ 2D PPVS flat panel with 3 X-ray tubes
 - □ Accessories to optimize irradiation range & treatment
 - Nozzle bottom clearance improved for a chair
 - Particle Quick switching
- $\circ~$ Innovative chair currently in development

Isocenter performances

Clinical Beam Performance Specifications	Unit	Carbon	Proton	Helium
Maximum range	g/cm²	≥ 27 ≥ 32		
Beam position accuracy at isocenter	mm	≤ 0.5		
Beam spot size @ max range (10)	mm	≤3	≤ 3.6	≤3.6
Beam spot size @ min range (10)	mm	≤ 4	≤8	≤ 6
Maximum Field size	cm²	≥ 20x20	≥ 30x30	≥ 28x28
SAD X/Y	cm		296 / 330	
Average dose rate (homogeneous cube of a 10 cm × 10 cm × 10 cm)	Gy/min	≥ 2		
Patient Positioning and Alignment Specifications	Unit	Couch		Chair
Treatment volume (L x W x H) cm 100 x 50 x 40 32 x		2 x 23 x 55		
Yaw rotation for prescription / correction $^{\circ}$ $\pm 90 / \pm 5$ ± 180		180/±5		
Pitch and roll range for prescription / correction * ± 10 /		±10 / ±5		

Challenges, perspectives and partnerships

©2024 Normandy Hadrontherapy – Confidential & Proprietary

First site: CYCLHAD (Caen, France)

The C400 cyclotron

REMINDER: Initial accelerator design is based on a IBA-JINR collaboration from 2009, reviewed by experts of our community.

Table B1: Summary of the C400 cyclotron Main parameters

General properties		
accelerated particles		$H_2^+, {}^{4}He^{2+}, ({}^{6}Li^{3+}), ({}^{10}B^{5+}), {}^{12}C^{6+}$
Injection energy	26 kV 🗲	25 keV/Z
final energy of ions,		400 MeV/amu
protons	_260<<270	265 MeV/amu
extraction efficiency		70 % (by deflector)
number of turns	~2100 🔶	~1700
Magnetic system		
total weight	737 Tons 두	700 tons
outer diameter	7m 🔶	6.6 m
height		3.4 m
pole radius		1.87 m
valley depth		60 cm
bending limit		K = 1600
hill field	\simeq	4.5 T
valley field	\sim	2.45 T
RF system		
radial dimension	\sim	187 cm
vertical dimension	\simeq	116 cm
frequency		75 MHz
operation		4th harmonic
number of dees		2
dee voltage		
center	~60 kV 👎	80 kV
extraction	~150 kV 🗲	170 kV

IBA experts (Jérôme Mandrillon, Vincent Nuttens, Willem Kleeven *et al.*) did an extra pass on all subsystems with substantial modifications and additions

Let's mention also the mechanical engineering experts: Laurent Koffel, Sebastien Deprez and Yohakim Otu that led the nice developments presented here.

Main technical features:

• "Compact" magnet

740 Tons – 7m diameter yoke - pole radius 1.87m pole is 4-fold symmetry / Elliptical gap / Spiralized poles can accelerate q/m = ½ particles

• **RF:** 75MHz for ¹²C⁶⁺, 75.6MHz for H₂⁺, Harmonic #4

Confidential

٠

Main technical features:

"Compact" magnet

740 Tons – 7m diameter yoke - pole radius 1.87m pole is 4-fold symmetry / Elliptical gap / Spiralized poles can accelerate q/m = ½ particles

• **RF:** 75MHz for ¹²C⁶⁺, 75.6MHz for H₂⁺, Harmonic #4

• Cryogenic coils

max field 4.5T

coils in liquid He bath

2 sub-coils/coil to adapt field to particle masses discrepancies.

'HMS' (Helium Management System)

Cryogenic system

First cooling from GHe to LHe with closed loop liquifaction system

Cooling power : 6 cryocoolers / 14 W cooling power @ 4.3 K $\,$

Highly instrumented for quench management (Temperatures / Voltages / pressures, strain gauges, quench heaters)

2x large tanks for complete He recovery & reliquefication on site \rightarrow Cost saving and environment friendly

H₂⁺ - TES type IS General overview of the C400 cyclotrom ¹²C⁶⁺ - ECR type IS Main technical features: ⁴He²⁺ - ECR type IS 740 Tons – 7m diameter yoke - pole radius 1.87m Carbon pole is 4-fold symmetry / Elliptical gap / Spiralized poles source can accelerate $q/m = \frac{1}{2}$ particles Tmagnet **RF:** 75MHz for ¹²C⁶⁺, 75.6MHz for H₂⁺, Harmonic #4 max field 4.5T 2 sub-coils/coil to adapt field to particle masses Diagnostic **Injection** line ٠ box **3** sources: H₂⁺, ⁴He²⁺ & ¹²C⁶⁺ Beam optics controls, buncher & diagnostics **ECR** sources He and H2 sources are commercial items (Polygon Physics) specifically tuned for the C400 IONS injection line The Carbon source is a novel in-house developments with up-to-date methods and technology **Transport** line layout & equipment designed to maximize transmission and injection into cyclotron

Main technical features:

"Compact" magnet

740 Tons – 7m diameter yoke - pole radius 1.87m pole is 4-fold symmetry / Elliptical gap / Spiralized poles can accelerate q/m = ½ particles

• **RF:** 75MHz for ¹²C⁶⁺, 75.6MHz for H₂⁺, Harmonic #4

Cryogenic coils

max field 4.5T

coils in liquid He bath

2 sub-coils/coil to adapt field to particle masses discrepancies.

Injection line

3 sources: H₂⁺, ⁴He²⁺ & ¹²C⁶⁺ Beam optics controls, buncher & diagnostics

• Dual extraction:

H₂⁺ @ ~265 MeV/u: protons extracted via stripping ⁴He²⁺ & ¹²C⁶⁺ @ 400 MeV/u: via electrostatic deflector

Beam losses management

- <u>Why?</u>

- High energy & current is large energy deposition spread inside the cyclotron
- Activation Dose received to personnel
- Power transmitted on SCC cryostat 📥 Quench risk

- Principles:
 - Computation of particle tracking of the lost particles inside matter
- Mitigations:
 - 1. Optimize injection
 - 2. Tune beam in the central region
 - 3. Addition of collimators at high radius

Beam losses management

1. Optimize injection: make use of the buncher in the injection line

Depending on the settings of the buncher, we can get either:

- an activation reduction by a factor ~2
- OR a max current multiplication by a factor ~4

Final settings and use will be defined by tests during commissioning

"outofCryo": meaning particles reaching cryostat exit po

Beam losses management

2. Tune beam in the central region: 'droplet' shaped phase selector

NO HIT DETECTION ON SELECTOR

"outofCryo": meaning particles reaching cryostat exit port Blue: High energy losses: losses post central region: in resonance & in extraction

Beam losses management

2. Tune beam in the central region: 'droplet' shaped phase selector

"outofCryo": meaning particles reaching cryostat exit port Blue: High energy losses: losses post central region: in resonance & in extraction

Beam losses management

3. Addition of collimators at high radius

Beam losses management

3. Addition of collimators at high radius

Second piece of collimators to stop remaining particles that going to be lost

Pre-septum of the gradient corrector to protect it from carbons and heliums

4th piece deals with proton losses during the 2-turns extraction

Confidential

Recent developments: Design progress

Beam probes

Design Requirements:

- measure beam current & shape at all orbits, mechanical accuracy (1mm), non magnetic+vacuum compatible
- Cooling, signal extraction, shielding from RF noise
- relatively fast: 2/3 minutes for a full track

"Usual radial probe" used on IBA cyclotron Not suited for C400

Did not allow for the optimum angle between beam and probe (90°)

Beam probes

<u>Chosen design:</u> curvilinear rail system + periscope +pops-ups

Features:

- suspended from upper yoke because of space optimization
- Curve parameterized to match almost perfect 90° between probe and beam down to R< 430mm
- Maximal reach R~100mm

Beam probes

<u>Chosen design:</u> curvilinear rail system + periscope +pops-ups

Beam current measurement:

Beam probes

Chosen design: curvilinear rail system + periscope +pops-ups

« visual track »

13

MEDIAN PLANE ---

Proton stripper

Main requirements:

- Accuracy and reliability of stripping foil position (affect beam properties)
- Fast particle switching proton/ions
- Replacement of stripping foil without cyclotron opening

Stripping foil in nominal position

Stripper motion for extraction

Docking station:

-

with isolated vacuum volume

1400 mm stroke (with bellow)

System and test bench Design finished, production starts soon

 $C230 \rightarrow C400$

- Significantly increase mechanical & measurement accuracy challenges
 - Position: ± 0.1mm repeatability & accuracy, <u>B field:</u> Aim for 10ppm absolute precision (~5G at B=4.5T max)
- Time challenge: Goal= Keep a full mapping under 24h
- Take into account impact of pressure force on magnetic field → mapping directly under vacuum

Magnetic mapping wheel

Key characterics:

- Full nonmagnetic environment, no induction, no thermal dilatation
 → Use of polymers, composites
- Vacuum compatible: remote electronics
- High speed of the mechanical arm: up to 0.5 m/s radial , >3 m/s azimuthal at max radius
- Multi-probes: Hall probe + NMR + custom-made high precision search coils

Search coil probes advantages:

- Measurement signal proportional to field gradient
 - Independent of field value: full precision in C400 field 2.5 -> 4.5 T
- Dynamic measurement making use of the high speed of the mechanical arm
- Very high measurement accuracy, depends only on the acquisition setup and electronic chain of measurement

	model			
	small	large		
diameter (mm)	3,8	7,4		
wire dia (um)	13	20		
coil height (mm)	2,6	5		
number of turns	~10k	~18k		
eff surface (m2)	~0,045	~0,375		

Magnetic mapping wheel

 \checkmark

 \checkmark

<u>(</u>)

Search coils commissioning sub-project

Steps:

-

- Search coil(s) design:
 - Geometry: height, inner/outer diameter
 - Sensitivity: wire thickness, number of turns
- Modelling of the probe response function
 - Analytical simulation
 - Determine the acquisition setup
- Manufacture the coils
- Probe calibration
- Data analysis and systematic effect mastering

Mapping strategy

Commissioning tests

- Manufactured by AUDEMARS (manufacturer of Swiss luxury watches!)
 - Performed at IBA with C230 mapping probe calibration dipole
 + dedicated rotative & translation setup
- In-depth analysis revealed a small but significant impedance mismatch between coils and integrator -> confirmed by METROLAB expert
- On-going works with strong support of IBA experts Goal: Mapping Wheel ready for deployment mid 2025

Pole edges handling arm

Design requirements:

- Minimize risks of accident/damage and mixing errors during handling
- Speed-up overall process
- Facilitate pole edge machining iterations

tool head

allow fitting on all types of pole edges

Zero gravity actuated arm (commercial item) Allows reversal for upper & lower pole edge manipulation

Recent developments

- Design progress:
 - Beam losses management
 - Beam probes
 - Proton stripper
 - Magnetic mapping wheel
 - Pole edges arm
- Production status:
 - SCC & cryostat
 - RF cavities
 - Electrostatic deflector
 - Magnetostatic channel ("gradient corrector")

RF cavities

Recent developments: Production status

SCC & cryostat

Conception & commissioning outsourced to SigmaPhi company

August 24: Cryostat vacuum (coils volumes) successfully tested at 10-6 mbar

Last step before delivery: Service turret commissioning (leak tests + functionality)

Outer vessel: equipped with radiation + N2 active cooldown

October 24: FAT @100K

Recent developments: Production status

RF cavities

Process:

- 12mm thick pure copper plates, dimensions around 2,5m x 1,5m x 0,6m, around 585 kg
- Challenging Sheet metal work (boiler), MIG/TIG welding (Preheating 300°C!), re-machining

1 cavity set fully finished + FAT, ready for delivery 3 others: production under way

Recent developments: Production status

Electrostatic deflector

- Entrance position, exit position, gap are adjustable
- Curvature can be adjusted
- ≈1.20m total length (0,6m on C230)
- Foreseen operating voltage: <50 kV

RFQ on-going with suppliers

Magnetostatic channel

- Entrance position, exit position are adjustable

Production and FAT finished, including motorized movement tests Not yet installed in the cyclotron

DOB - partial	Aménagement Cyclhad Aménagement Sogea
phase 1 DOB - final	Rigging quench tanks Rigging lower catwalk Rigging lower Yoke installation Rigging Beam Line Rigging HMS
PHASE 2	Rigging SCC Rigging upper Cyclo HMS connection Pipping
PHASE 3	Test SCC
PHASE 4	Magnetic mapping EIS Test Bench
PHASE 5	Cyclo post mapping installation ElS RF commissioning and test
PHASE 6	Cyclo Beam test Beam On Degrader
PHASE 7	Transfer BL & Nozzle Aménagement Patient Room

Phase 1 rigging – February 2024

Quench tanks for He recovery

DOB - partial	Aménagement Cyclhad Aménagement Sogea
phase 1 DOB - final	Rigging quench tanks Rigging lower catwalk Rigging lower Yoke installation Rigging Beam Line Rigging HMS
PHASE 2	Rigging SCC Rigging upper Cyclo HMS connection Pipping
PHASE 3	Test SCC
PHASE 4	Magnetic mapping EIS Test Bench
PHASE 5	Cyclo post mapping installation EIS RF commissioning and test
PHASE 6	Cyclo Beam test Beam On Degrader
PHASE 7	Transfer BL & Nozzle Aménagement Patient Room

Phase 1 rigging – February 2024

Beamlines

Power cabinets

Water cooling groups

DOB - partial	Aménagement Cyclhad Aménagement Sogea
phase 1 DOB - final	Rigging quench tanks Rigging lower catwalk Rigging lower Yoke installation Rigging Beam Line Rigging HMS
PHASE 2	Rigging SCC Rigging upper Cyclo HMS connection Pipping
PHASE 3	Test SCC
PHASE 4	Magnetic mapping EIS Test Bench
PHASE 5	Cyclo post mapping installation ElS RF commissioning and test
PHASE 6	Cyclo Beam test Beam On Degrader
PHASE 7	Transfer BL & Nozzle Aménagement Patient Room

Phase 1 rigging – February 2024

 \checkmark

DOB - partial	Aménagement Cyclhad Aménagement Sogea
phase 1 DOB - final	Rigging quench tanks Rigging lower catwalk Rigging lower Yoke installation Rigging Beam Line Rigging HMS
PHASE 2	Rigging SCC Rigging upper Cyclo HMS connection Pipping
PHASE 3	Test SCC
PHASE 4	Magnetic mapping EIS Test Bench
PHASE 5	Cyclo post mapping installation EIS RF commissioning and test
PHASE 6	Cyclo Beam test Beam On Degrader
PHASE 7	Transfer BL & Nozzle Aménagement Patient Room

Auxiliaries installation: Mid 2024 - Present

Cryo-coolers

Installation, connection, conditioning, boot-up of various sub-systems...

Water cooling groups

Technical rooms equipment

Power supply room

DOB - partial	Aménagement Cyclhad Aménagement Sogea
phase 1 DOB - final	Rigging quench tanks Rigging lower catwalk Rigging lower Yoke installation Rigging Beam Line Rigging HMS
PHASE 2	Rigging SCC Rigging upper Cyclo HMS connection Pipping
PHASE 3	Test SCC
PHASE 4	Magnetic mapping EIS Test Bench
PHASE 5	Cyclo post mapping installation ElS RF commissioning and test
PHASE 6	Cyclo Beam test Beam On Degrader
PHASE 7	Transfer BL & Nozzle Aménagement Patient Room

Commissioning the cryogenic system

DOB - partial	Aménagement Cyclhad Aménagement Sogea
phase 1 DOB - final	Rigging quench tanks Rigging lower catwalk Rigging lower Yoke installation Rigging Beam Line Rigging HMS
PHASE 2	Rigging SCC Rigging upper Cyclo HMS connection Pipping
PHASE 3	Test SCC
PHASE 4	Magnetic mapping EIS Test Bench
PHASE 5	Cyclo post mapping installation ElS RF commissioning and test
PHASE 6	Cyclo Beam test Beam On Degrader
PHASE 7	Transfer BL & Nozzle Aménagement Patient Room

Beam delivery and treatment room equipment

Project delivery status: Perspectives

Timeline

©2024 Normandy Hadrontherapy – Confidential & Proprietary

05/2026 Caen

06/2026 Caen

Challenges, perspectives and partnerships

©2024 Normandy Hadrontherapy – Confidential & Proprietary

Thank you for your attention

Introducing ...

Normandy Hadrontherapy (NHa) located in Caen, France

- 2 main shareholders: IBA & SAPHYN (Normandy Region).
- Several other industrial and institutional partners joined the project
- Owning about **40%** of the shares, **IBA** is:
 - (i) the largest equity stakeholder
 - (ii) industrial shareholder of NHa.

- S Accelerators technology is in IBA DNA
- Solution (Design of the C400 heavy ion cyclotron (Based on IBA design Transfer of IP)
- All the other element(s) of the treatment rooms (IGPT, workflow and integration) using IBA technology
- Solution Largest equity shareholder of NHa and authorized partner to market the new heavy ion system

- O Design, produce and market C400 IONS system
- Suild a multiple heavy ions particle Radiation Oncology department in Caen with research capacity (Biology and Physics)
- Supported by the Normandy Region (French state) already hosting GANIL to become a leading European center for research and treatment in hadrontherapy

SC coils & cryostat

NIHa NORMANDY HADRONTHERAPY

55

Coils

Ramping time : 2 hours

Time to switch between particles : < 15 min

Stored energy: ~55.6 MJ

Cold mass at 4.3K: 14.6 tons

turns per coil : 1344

Supra material : NbTi

Critical current: 2800 A @ 4,5 T @ 4,2 K

Conductor peak field: 3.9T

Current density : ~31 A/mm²

Coils current:

PS1 ~1034 A (on all 4 sub coils)

PS2 (max 120A) (only on 2 sub coils)

Cryostat

Outer diameter: 4.8m

Liquid helium bath T°: 4.3 K

Liquid helium thermosyphon circulation system

Cooling power : 6 cryocoolers / 14 W cooling power @ 4.3 K

Highly instrumented for quench management (Temperatures / Voltages / pressures, strain gauges, quench heaters)

