

DRD1 VMM3a/SRS Beam Telescope

Test Beam September 2024

Lisa Generoso

Ph.D School in Particle Physics – XL cycle Universita `degli Studi di Bari Aldo Moro

PAD μ -RWELL 20X20 CM² ADC MPV

• Results in agreement with measurements on a light-cathode uRwell with a picoammeter carried out by Silvia (presented at the Common Project Meeting on 4/09/2024)

- Maximum ADC at ~ 2.5 kV/cm, then decreasing at larger values of the drift field (independent of the top voltage)
- Increasing ADC at increasing Top Voltages for the whole drift range
- Same behavior with ArCO₂CF₄ and ArCO₂: independent of the gas mixture, only dependent on the detector technology

EFFICIENCY BASED ON TRACKING

- Ratio between :
 - Number of tracks with associated cluster on the uRwell, with dy & dy < 20 mm
 - Total number of reconstructed tracks

Efficiency vs Top Voltage

- Plateau @ ~ 520 V for $ArCO_2CF_4$ and @ ~ 480 V for $ArCO_2$
- The larger the drift field the higher the plateau level: ~ 85% @ 5 kV/cm for $ArCO_2CF_4 \sim 88\%$ @ 5 kV/cm for $ArCO_2$ (expected : 10 % intrinsic detector inefficiency due to the groove structure)

Preliminary - ArCO₂CF₄: - THL 2 fC

Preliminary - ArCO₂CF₄ - THL 1 fC

Preliminary - ArCO₂ - THL 1 fC

PAD μ -RWELL 20X20 CM² Efficiency vs Drift Field

Preliminary - ArCO₂CF₄ - THL 1 fC

Preliminary - ArCO₂ - THL 1 fC

16/01/2025

Low Top Voltage (~ low gain) :

Preliminary - ArCO₂CF₄: - THL 2 fC

• Maximum efficiency at ~ 2-3 kV/cm, then decreasing at larger values of the drift field

High Top Voltage (~ high gain):

- Increasing trend in the whole drift range Inconsistent with the pulse height of the signal
- → some "compensation" mechanism must be responsible for the efficiency increase despite the lower gain

HYPOTHESIS

Expected increase of the efficiency in zones close to the pep lines (along y) at increasing Drift Fields due to a possible straightening of the field lines

2022

PEP-Groove: DLC grounding through conductive groove to ground line Pad R/O = 9×9mm² Grounding: - Groove pitch = 9mm - width = 1.1mm → 84% geometric acceptance

EFFICIENCY ALONG THE X-AXIS AT DIFFERENT DF

- Observable dips of the efficiency with a modular pattern (corresponding to the 1 cm spacing of subsequent pep lines)
- The efficiency dips are "less deep" at larger Drift Fields
- They compensate for the systematic decrease in efficiency given by smaller amplification at large Drift Field

Electronics

VMMs Vs APVs

- **APV** data at 1.8 kV/cm form TB 07-2024
- **VMM** data with Ar:CO2 :CF4
- Saturation efficiency of APVs compatible to VMM 1&2 fC @ 1.7 kV/cm
- APVs turn on rise similar to that of VMMs@1fC

Gas Mixture

ArCO₂CF₄ Vs ArCO₂

Ar:CO₂70:30 higher charge multiplication \rightarrow extended gain-range inspected

Overlapping of the turn-on curves at low charge values (below 100 ADC)

ArCO2CF4

1.7 kV/cm

2.5 kV/cm

+ 4.2 kV/cm

300

MPV Charge [ADC Counts]

200

100

1.2 kV/cm

3.3 kV/cm

500

Saturation value of the efficiency is about few % larger in Ar:CO₂ than in $Ar:CO_2:CF_4$

Analog Threshold

THL 1 fC Vs 2 fC

- Plateau reached almost for the same charge value, independently of the drift field :
 - THL 1 fC @ ~80 ADC counts **THL 2 fC** @ ~100 ADC counts
- The lower the THL the larger the saturating efficiency

PAD $\mu\text{-}RWELL \ 20X20 \ CM^2$ TIME RESOLUTION

- Gaussian fit of the time difference distributions between trigger each cluster associated with a track
- The sigma provides an estimate of the convolution of the time resolution of the uRwell, electronics and trigger

- Best time resolution of 10.5-11 ns @ DF :5 kV/cm and TV : 560 V
- The measured values must be corrected by subtracting the trigger time resolution (difficult to estimate)
 → easier to consider the Δt wrt the timestamp of the track

PAD μ -RWELL 20X20 CM² **CORRECTED TIME RESOLUTION**

- Gaussian fit of $\Delta t = t_{track} t_{uRwell} \rightarrow \sigma = \sqrt{\sigma_{uRwell} + \sigma_{track}}$
 - The t_{track} is the mean time of the t_{max} of the trackers clusters associated with the track (t_1, t_2, t_3)
 - The σ_{track} can be estimated from the fit of the distributions • $t_1 - t_2, t_2 - t_3$ and $t_3 - t_1 \rightarrow get \sigma_{uRwell}$
 - Errors computed by propagating the uncertainties of the fits on the sigmas of each Gaussian

Delta time distribution for DF 4.6 kV/cm, TV 560 V

Delta time distribution for DF 4.6 kV/cm. TV 560 V

PAD μ -RWELL 20X20 CM² CORRECTED TIME RESOLUTION

- Gaussian fit of $\Delta t = t_{track} t_{uRwell} \rightarrow \sigma = \sqrt{\sigma_{uRwell} + \sigma_{track}}$
- Represent the $\sigma_{uRwell} = \sqrt{\sigma \sigma_{track}}$ wrt DF and TV
 - The errors on $\pmb{\sigma}_{\mathsf{uRwell}}$ are also represented, though they are small

Corrected time resolution for a 6 mm uRwell is below 10 ns for TV > 530 V in ArCO₂CF₄

INSPECT FOR CROSS TALK

Cluster Size vs Pulse Height

- Average cluster size along x (y) for cluster sizes along x (y) > 1
- Different trends along the two axis
 - → along x : increase and saturation above 200 ADC (possible x-talk?)
 - → along y: (anomalous) peak at ~ 70 ADC, then decrease and saturation

THANK YOU FOR THE ATTENTION

BACKUP SLIDES

EXPERIMENTAL SETUP

IMM

Analogue Monitoring Output

VMM3a / Scalable Readout System (SRS)

- 2 VMM chips each
- 64 channels per VMM
- All hybrids powered by an external power supply
- Except for those of the 20x20 cm² uRwell : internal HDMI powering in use

16/01/202

• Additional hybrid used to store trigger information

- 1×1 cm² pad area
 384 pads → 3 hybrids
 Drift Gap: 6 mm
 - DLC grounded, TOP and DRIFT connected to HV
 - Horizontal connecting vias
 - Gas Mixture Ar CO₂ CF₄ 45:15:40 and Ar CO₂ 70:30

- Electronic Gain : 12 mV/fC
- Analog Threshold Levels: 0.8 fC, 1 fC, 2 fC
- Reconstruction of the beam profile
- Active area of the detector limited to the overlap of the triggering scintillators

TB September 2024

Cluster Reconstruction with vmm-sdat

args = ['/eos/project/r/rd51/SRSVMMAnalysis/vmm-sdat/build/convertFile',

'-f', '/eos/project/r/rd51/SRSVMMData/tb202409/rawdata/run' + str(item) + '.pcapng',

'-geo', '/eos/project/r/rd51/SRSVMMAnalysis/tb202409/mappings/mapping_tb202409_beam_coordinates.json',

'-bc', '44.4444', '-tac', '60',

'-th', '-1',

'-cs', '[1,1,1,1,1,1]', '-ccs', '[1,2,2,2,2,1,1]', '-mst', '[0,1,1,1,2,2,2]',

'-dt', '[150,150,150,150,150,350,350]', '-spc', '[150,500,500,500,500,700,700]', '-dp', '[150,250,250,250,500,700,700]', '-crl', '[0.5,0.25,0.25,0.25,0.1,0.1,0.1]', '-cru', '[2.0,4.0,4.0,4.0,10.0,10.0]',

'-save', '[[],[],[0,1,2,3,4,5,6]]',

'-algo', '4',

'-info', 'corry',

'-cal', '/eos/project/r/rd51/SRSVMMAnalysis/tb202409/calibs/tb202409_calib_completly_full.json',

'-df', 'SRS']

ArCO2CF4 THL 1

ArCO2 THL 1

