Open B production at the LHC in NNLO+NNLL QCD

Michał Czakon, **Terry Generet**, Alexander Mitov, Rene Poncelet

Based on arXiv:2411.09684

LHCb UK Meeting Cambridge, UK, 7 January 2025

Terry Generet, University of Cambridge Open B production at the LHC at NNLO+NNLL

Open B production at previous colliders

- \bullet A wealth of data from the Tevatron and S ppS on open B
- Processes considered:

 $p \overline{p} \rightarrow b + X$ $(\downarrow B / \mu / J/\psi / \psi(2S))$ $p \overline{p} \rightarrow 2b + X$ $(\downarrow 2B / 2\mu)$

• Previous comparisons to theory: NLO(+NLL)

Cacciari, Greco, Nason (1998)

- Consistently found data/theory $\approx 1.7 \pm 0.5$ (th.) (initially data/theory ≈ 3 before theory improvements)
- We can do better: NNLO+NNLL!

Naive combination of 10 measurements:

Open B production at the LHC

- Much nicer data available from (all four) LHC experiments
- No 'b-quark-level data', but many different decay modes
- More extreme kinematics: higher rapidity and much higher p_T
- General picture at NLO+NLL (FONLL):
 - Large theory uncertainty at low p_T
 - Shape difference (but within uncertainty)
 - More precise at high p_T
 - Experiment generally much more precise
- High time the predictions were updated!

New results: B^+ spectrum at 7 TeV LHC (ATLAS)

New results: μ^{\pm} from *B*-hadrons at 5.02 TeV (ATLAS)

Old result: J/ψ from *B*-hadrons at 8 TeV (ATLAS)

Clear deviation of some kind, but hard to interpret

New results: J/ψ from *B*-hadrons at 8 TeV (ATLAS)

No more shape difference: deviation is just a constant factor!

New results: J/ψ from *B*-hadrons at 8 TeV (ATLAS)

Most probably solution: $BR(B \rightarrow J/\psi)$ is off by 25% (3 σ)

$BR(B \rightarrow J/\psi)$

- Most probably solution: ${\sf BR}(B \to J/\psi)$ is off by 25% (3σ)
- Fully inclusive BR
- High-energy mixture of B-hadrons (40.8% B⁰, 40.8 % B⁺, 10% B_s, 8.4% Λ_b)
- Current PDG value: $(1.16 \pm 0.10)\%$
- Based on LEP measurements from the 90s
- Could probably do with an update...
- Will try 'proper' fit using our predictions, but not ideal
- Cannot be measured at BELLE (II)
- Due to low \sqrt{s} , only 50/50 mixture of B^0 and B^+ measurable $_{10/12}$

$BR(B \rightarrow J/\psi)$

- BR($B \rightarrow J/\psi$) for BELLE mixture: (1.094 ± 0.032)% (lower!)
- BR $(B_s \rightarrow J/\psi)$ expected to be similar
- $\mathsf{BR}(\Lambda_b \to J/\psi)$ expected to be much lower
- Non-prompt $\psi(2S)$ spectrum shows similar deviation
- BR($B \rightarrow \psi(2S)$) only known as ratio to BR($B \rightarrow J/\psi$) \Rightarrow Expect correlated deviations
- $\bullet\,$ All suggests BR for the high-energy mixture lower than 1.16%
- Measurement by LHCb?

Conclusion & outlook

- Better description of open B at NNLO+NNLL
- Smaller uncertainties (competitive with experiment at high p_T)
- Shape difference observed at NLO disappeared
- No comparison to LHCb data for now, but in the works
- New interpretation of old deviation for non-prompt J/ψ
- New interpretation not possible at NLO: need NNLO!
- Suggests remeasuring $BR(B \rightarrow J/\psi)$ could be interesting

Interested to hear your input, both on the production spectra and on $BR(B \rightarrow J/\psi)!$