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Figure 22: Summary of ordinary charmonia, XYZ and pentaquarks listed by the PDG [1].

Such a state was actually claimed to be narrower in other analyses [277, 278] with �p = 120MeV, but
no consensus was reached [279, 281, 282]. A recent CLAS analysis finds actually two N(1720) with similar
mass and widths, but di↵erent Q

2 behavior in electroproduction [283]. The ANL-Osaka analysis finds two
poles with masses 1703 and 1763MeV and widths 70 and 159MeV, respectively [284]. Since quark models
predict several 3/2+ states in this energy region [18, 261, 262, 264], it is possible that the data analyses
are not able to resolve each pole individually. Further research is necessary to establish the number and
properties of resonances in this energy region, before discussing their nature.

2.5. Heavy quark spectroscopy

The unexpected discovery of the X(3872) in 2003 ushered in a new era in hadron spectroscopy [285].
Experiments have claimed a long list of states, collectively called XYZ, that appear mostly in the char-
monium sector, but do not respect the expectations for ordinary QQ̄ states, summarized in Figure 22. An
exotic composition is thus likely required [3, 9]. Several of these states appear as relatively narrow peaks
in proximity of open charm threshold, suggesting that hadron-hadron dynamics can play a role in their
formation [4, 286]. Alternatively, quark-level models also predict the existence of supernumerary states, by
increasing the number of quark/gluon constituents [2]. The recent discovery of a doubly-heavy T

+
cc [287, 288]

and of a fully-heavy X(6900) [289] states make the whole picture extremely rich. Having a comprehensive
description of these states will improve our understanding of the nonperturbative features of QCD. Most
of the analyses from Belle and BaBar su↵ered from limited statistics, and strong claims were sometimes
made with simplistic models on a handful of events. Currently running experiments like LHCb and BESIII
have overcome this issue, providing extremely precise datasets that also require more sophisticated analysis
methods and theory inputs. The status of ordinary and exotic charmonia is summarized in Figure 22. De-
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broad resonances, 
unfamiliar patterns

narrow, long-lived, 
pattern similar to 
the quark model
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X(3960) { → DsDs} 
X(3930) { → DD} 
X(3915) { → ψω}

?

{ → DD,DD*}

ɣɣ → DD

Level counting is not clear: 
• Near threshold behaviours? 
• Multiple decoupled resonances? 

Probably one 
resonance 
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Figure 2: Background-subtracted invariant-mass distributions (top left) m(D+
s D

�
s ), (top right)

m(D+
s K

+) and (bottom) m(D�
s K

+) for the B+! D+
s D

�
s K

+ signal. The projections of the fit
with the baseline amplitude model are also shown.

value of m is below the threshold of the channel j, i.e. q2j < 0, an analytic continuation

is applied for qj = i
q
�q2j [55, 56]. The total width of the resonance is calculated as

�0 =
P

j gj⇢j(M0). In the baseline model, only the D+
s D

�
s channel (j = 1) is included in

the Flatté-like parameterisation.
Other resonances are modelled by a relativistic Breit–Wigner function BW(m | M0,�0)

with a mass-dependent width [32]. The radius of each resonance entering the Blatt–
Weisskopf barrier factor [57–59] is set to 3GeV�1, corresponding to about 0.6 fm.

The total probability density function is the squared modulus of the total decay
amplitude multiplied by the e�ciency, normalised to ensure that the integral over the
Dalitz plot is unity. The fit fraction Fi expresses the fraction of the total rate due to
the component i, and the interference fraction Iij describes the interference between
components i and j. They are defined in Eqs. (18) and (19) of Ref. [53], such thatP

i Fi +
P

i<j Iij = 1.
As shown in Fig. 2, the two-body mass distributions are well modelled by the baseline

amplitude fit. The corresponding numerical results are summarised in Table 1, including
the mass, width, fit fraction, and significance (S) of each component. The significance
of a given component is evaluated by assuming that the change of twice the negative
log-likelihood (�2 lnL) between the baseline fit and the fit without that component
obeys a �2 distribution, where the number of degrees of freedom (n.d.f.) is given by the
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Near threshold enhancement at  threshold 

Most likely S-wave -  threshold suppression 

Relatively simple: only one large amplitude

DsD̄s

k2ℓ

David Wilson

overlapping  and  resonances around 3925 MeV 

Large effects from X1(2900)→DK (3-body?)

0++ 2++

Also arXiv:2406.03156 (LHCb)

Consistent  state around 3925 MeV 
Several new states, very complicated process 
For ,  also contributes

JPC = 2++

DD̄* JPC = 1++
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first principles Lattice QCD calculations 
can help understand this

are all of these bumps resonances? 

how are these enhancements related? 

how many states are there in  and ? 

can we understand how the quark-model-like 
states and meson-meson like states contribute 
to the observed features?

0++ 2++

Figure 22: Summary of ordinary charmonia, XYZ and pentaquarks listed by the PDG [1].
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X(3960) { → DsDs} 
X(3930) { → DD} 
X(3915) { → ψω}

?
ɣɣ → DD
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Familiar example:  
Features in different final states from the same resonance

f0(980)

�/
f 0
(6
00
)

f 0
(9
80

)

CERN-Munich, ANL, BNL

seen as a dip in ππ
sharp turn-on at threshold in KK̄

S S
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Briceño et al (HadSpec) 
arXiv:1708.06667

arXiv:2209.09840 
LHCb

Can also appear as a 
peak in decays

m𝛑=391 MeV

Coupled-channel S-matrix:

S-wave, s-channel scattering



David Wilson 9Lattice QCD scattering/spectroscopy workflow

Compute 
Correlation 

Matrix

Obtain 
Finite Volume  

Spectrum

Determine 
Scattering 

Amplitudes

Poles, 
Couplings

Review: Briceño, Dudek, Young,  
https://doi.org/10.1103/RevModPhys.90.025001
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“0++” “2++” “2++ & 3++”

S+D, zero total momentum
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“0++” “2++” “2++ & 3++”

David Wilson

doesn’t  
appear in  
←

0++

←

←

7-channels

S S



higher scalar amplitudes - from rest energies only 12
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consider 7-channel system

K-matrix pole terms are necessary 
to obtain a good quality of fit

David Wilson



tensor amplitudes - from rest energies only 13
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peaks at a similar energy

very small  amplitudes - 
some phase space suppression

DsD̄s

 is large - 
similar phase space to 
DD̄*

DsD̄s

7-channels, mixture of S and D

David Wilson



poles - scalar 14

0.1 0.2 0.3 0.4



Complex plane - scalar 15

Common pole influences  
both amplitudes

Physical scattering at  
real energies

Branch point

David Wilson



Complex plane - scalar 16

Similar story for 2++

one resonance pole 
— many different amplitudes

We don’t need different poles in 
different coupled amplitudes

A single resonance pole can be 
responsible for many bumps and 
features



2++ pole & couplings 17

0.1 0.2 0.3 0.4

additional poles were found 
- don’t appear to be important 

“coupling-ratio” phenomena seen in K-matrix pole parameters 
- possible to rescale K-matrix gi factors and obtain similar amplitudes 
- t-matrix couplings are found to be well-determined
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Summary & outlook 19

Scalar and tensor charmonium resonances from lattice QCD 

- at m𝛑=391 MeV, one scalar and one tensor resonance pole is found below 4 GeV  
- The level counting is not obviously different from the quark model 

- large coupled-channel effects in OZI connected D-meson channels 
- OZI disconnected channels look small everywhere 

- we have extracted a complete unitary S-matrix and this naturally connects features 
seen in different channels and simplifies the overall picture 

- some channels have enhancements very different to simple Breit-Wigners 

- a clear, as yet unobserved,  resonance is present in  & a bound state in  
- we do not find a near-threshold S-wave  state (between 3700 and 3860 MeV) 

- these methods can also be applied to the X(3872)  channel and the vector channel 

3++ DD̄* 2−+

DD̄

1++

David Wilson

Full details and references: 
arXiv: 2309.14070 (7 pages) 
arXiv: 2309.14071 (55 pages)

https://arxiv.org/abs/2309.14070
https://arxiv.org/abs/2309.14071
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- Big picture stuff with large light quark 
masses eg consider flavour SU(3) point 

- At some point it should be possible to 
consider the full process:   

- Much of the three-body theory exists but 
we need more practical experience            
(3-body is challenging) 

B+ → D(*)
(s) D̄(*)

(s)K
+

David Wilson
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- Several form factors 
- ρ-resonance peak 
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4100

4000

3900

3800

3700

3600

3500

spectra from qqbar operators only, 
Liu et al JHEP 1207 (2012) 126

Lattices

‘’HadSpec’’ lattices 

anisotropic (3.5 finer spacing in time) 
Wilson-Clover

L/as=16, 20, 24  
mπ  = 391 MeV

rest and moving frames

Nf = 2+1 flavours 
all light+strange annihilations included 
no charm annihilation

using distillation (Peardon et al 2009) 
many channels, many wick contractions

This study: Meson-meson + qqbar ops

Derivative ops - good overlap upto J=4

Variationally-optimised single meson ops

Previously:
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generalisation to a 3-dimensional strongly-coupled QFT 
￫ powerful non-trivial mapping from finite vol spectrum to infinite volume phase

1-dimensional QM, periodic BC, two interacting  particles:V(x1 - x2) 6= 0

Lüscher 1986, 1991

Review by Briceno, Dudek, Young: Rev. Mod. Phys. 90, 025001 (arXiv:1706.06223)

See also Kim, Sachrajda, Sharpe: Nucl. Phys. B727 (2005) (arXiv:hep-lat/0507006)



24rho resonance in elastic pi-pi scattering

��� ��� ��� ��� ��� ����

��

��

��

���

���

���

Phase shifts via the Lüscher method:

KK

tan �1 =
⇡3/2q

Z00(1; q2)

Z00(1; q
2) =

X

n2Z3

1

|~n|2 � q2

�1/
�

0.10

0.15

0.20

[000]T�
1

Ecm/MeV

���

���

���

���

���

����

����

����

����



��� ��� ��� ��� ��� ����

��

��

��

���

���

���

�=[���]�=[���]

�=[���]�=[���]

�=[���]�=[���]

�=[���]�=[���]

�=[���]�=[���]

25rho resonance in elastic pi-pi scattering

�/�

~P = [000]
~P = [001]
~P = [011]
~P = [111]
~P = [002]

Ecm/MeV



26rho and K* resonances with physical pion masses
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S+D, zero total momentum 27

“0++” “2++” “2++ & 3++”

only very  
small shifts 
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“0++” “2++” “2++ & 3++”

“extra” level ?

S+D, zero total momentum
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“0++” “2++” “2++ & 3++”

similar on  
L/as=20

S+D, zero total momentum
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“0++” “2++” “2++ & 3++”

“extra” level ?
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“0++” “2++” “2++ & 3++”

David Wilson

 no 
Energy  
levels 

←

 2 
energy  
levels 

←

7-channels

1 energy  
level  
~

→
3++
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“0++” “2++” “2++ & 3++”

David Wilson

S-wave

7-channels

←
←

D-wave
←

←

D-wave
←

←



S-wave - [000] A1
+ 33
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m𝛑=391 MeV
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S-wave - [000] A1
+ 35
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what’s going on near DDbar threshold? 36
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David Wilson
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Finite volume spectrum from Lüscher Quantization Condition 38
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David Wilson



39For coupled-channels, many partial waves: Eigenvalue decomposition

Woss, DW, Dudek, arXiv:2001.08474, PRD 101, 114505 (2020)

https://arxiv.org/abs/2001.08474


“background” waves - P=- 40

(we also computed lattice irreps 
with non-zero total momentum)

P=- partial waves can then contribute

very little going on here

an ηc2 2-+ state arises below DD*



“background” waves - 3++ 41

extra level and resonance higher up
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Results from Prelovsek, Padmanath 
et al, suggest effects at DDbar and 
DsDsbar thresholds  

- pion mass ~ 280 MeV 

- light quark heavier than physical, 
strange quark lighter than 
physical 

hard to justify such a large change 
due to the light quark mass (no 
one-pion-exchange term) 
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Figure 22: Summary of ordinary charmonia, XYZ and pentaquarks listed by the PDG [1].

Such a state was actually claimed to be narrower in other analyses [277, 278] with �p = 120MeV, but
no consensus was reached [279, 281, 282]. A recent CLAS analysis finds actually two N(1720) with similar
mass and widths, but di↵erent Q

2 behavior in electroproduction [283]. The ANL-Osaka analysis finds two
poles with masses 1703 and 1763MeV and widths 70 and 159MeV, respectively [284]. Since quark models
predict several 3/2+ states in this energy region [18, 261, 262, 264], it is possible that the data analyses
are not able to resolve each pole individually. Further research is necessary to establish the number and
properties of resonances in this energy region, before discussing their nature.

2.5. Heavy quark spectroscopy

The unexpected discovery of the X(3872) in 2003 ushered in a new era in hadron spectroscopy [285].
Experiments have claimed a long list of states, collectively called XYZ, that appear mostly in the char-
monium sector, but do not respect the expectations for ordinary QQ̄ states, summarized in Figure 22. An
exotic composition is thus likely required [3, 9]. Several of these states appear as relatively narrow peaks
in proximity of open charm threshold, suggesting that hadron-hadron dynamics can play a role in their
formation [4, 286]. Alternatively, quark-level models also predict the existence of supernumerary states, by
increasing the number of quark/gluon constituents [2]. The recent discovery of a doubly-heavy T

+
cc [287, 288]

and of a fully-heavy X(6900) [289] states make the whole picture extremely rich. Having a comprehensive
description of these states will improve our understanding of the nonperturbative features of QCD. Most
of the analyses from Belle and BaBar su↵ered from limited statistics, and strong claims were sometimes
made with simplistic models on a handful of events. Currently running experiments like LHCb and BESIII
have overcome this issue, providing extremely precise datasets that also require more sophisticated analysis
methods and theory inputs. The status of ordinary and exotic charmonia is summarized in Figure 22. De-

30

resonances with charm quarks 56

JPAC arXiv:2112.13436

Godfrey & Isgur

Quark model
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FIG. 1: Fit to the BaBar (left) and Belle (right) data separately. TheD-mass sidebands have been subtracted from the

Belle data. The dashed and dotted lines represent the contributions from the χc0(2P ) and the χc2(2P ), respectively.

with Γ being the width of the resonance at rest. The centrifugal barrier factor [21, 22] is F0 = 1 for an S

wave, and

F2(w) =

√

(R2p20 − 3)2 + 9R2p20
√

(R2p2 − 3)2 + 9R2p2
(3)

for a D wave. The same value 1.5 GeV as used in Ref. [3] will be taken for the “interaction radius” R.

We fit to the BaBar and the Belle data separately in the region from the DD̄ threshold to 4.2 GeV with

four parameters: the massM0 and width Γ0 of a 0+ resonance which couples to the DD̄ in an S-wave, and

two normalization constants N0 and N2 for the scalar meson and the χc2(2P ), respectively. The mass and

width of the χc2(2P ) are fixed to 3927 MeV and 24 MeV [4], respectively. There is no interference between

these two structures because they are in different partial waves. Contrary to the BaBar data, the Belle data

are not efficiency corrected. Nevertheless, the Belle efficiency only decreases by 10% for an increase of

the invariant mass from 3.8 to 4.2 GeV, and there is no fine structure in the efficiency and background

distributions [2, 23]. Furthermore, the D-mass sidebands have been subtracted from the Belle data used in

our fit. A comparison of the best fit to the data are shown in Fig. 1.

The fit results are collected in Table I, where the uncertainties only reflect the statistical errors in the

fit. One sees that the two resonance assumption gives a reasonable fit to both data sets. The large value

of χ2/dof for the fit to the BaBar data comes mainly from a few bins where the event numbers are quite

separated from their neighbors. Comparing the resulting parameters from the two fits, the difference in the

values of the mass is 2σ, and the values of the width and the ratio of the normalization constants are fully

consistent with each other. The mass is compatible with the lattice estimate for the mass of the χc0(2P )

discussed above, and the width is of the right order for an S-wave strongly decaying hadron. Furthermore,

• BaBar, Belle - resonance around 3860 MeV

• Guo & Meissner (2012) 

m = 3840 MeV, Γ = 220 MeV

arXiv:1208.1134 

• Wang et al (2021), Daneika et al (2022):

Complications from Born exchanges lead to a

lower state around 3700 MeV
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FIG. 1: Born terms for the γγ → DD̄ reaction. (a) the contact term, (b) D meson exchange in the t-channel, and (c) D meson
exchange in the u channel.

for about a range of 144 MeV, from the DD̄ threshold to 3880 MeV. The model for the process γγ → DD̄ combines
the Born terms: the contact term, and the D meson exchange in the t and u channels, as shown in Fig. 1.
Contrary to the γγ → π+π−, the D-exchange terms are now here much smaller than those of π-exchange of Ref. [25],

because we have the denominator in the D meson propagator at threshold,

1

(q0)2 − (q⃗ )2 −m2
D

, (3)

where q = (q0, q⃗ ) is the four-momentum of the exchanged D meson, and we have q0 = p0 − p′0 = 0 and |q⃗ | = |p⃗ | =
p0 ≈ mD at the DD̄ threshold. So we have,

1

0−m2
D −m2

D

≈
1

−2m2
D

, (4)

which is much smaller than 1/(−2m2
π) in absolute value.

These terms have also energy dependence, because we have the vertex with the term ϵ · (p′ − q), which in the
Coulomb gauge ϵ0 = 0 and ϵ⃗ · p⃗ = 0 for the photon, which we use to evaluate, is given by,

ϵ⃗ · (q⃗ − p⃗ ′) = ϵ⃗ · (q⃗ + p⃗ ′ − 2p⃗ ′) = −2ϵ⃗ · p⃗ ′. (5)

In the limited range of the DD̄ invariant masses that we consider, p⃗ ′ is small and one can easily see that the
contribution of the D-exchange terms are smaller than 3% of the contact term of Fig. 1(a), 2e2ϵ⃗1 · ϵ⃗2. Hence we
neglect these exchange terms and take the amplitude as,

Mγγ→D+D− = 2e2ϵ⃗1 · ϵ⃗2. (6)

Thus, we will neglect the contributions of Figs. 1(b) and (c) in this work.
In addition, there are also other possible exchanges of D∗ resonances with anomalous terms but again, the denom-

inator of the propagators are large and the terms are small close to the threshold.
We have the differential cross section for the reaction γγ → DD̄,

dσ

dΩ
=

1

64π2

1

s

|p⃗ ′|
|p⃗ |

¯∑|M|2

=
1

64π2

1

s

|p⃗ ′|
|p⃗ |

¯∑|2e2 ϵ⃗1 · ϵ⃗2|2, (7)

where we average the polarization vectors of the transverse photons,

¯∑
(⃗ϵ1 · ϵ⃗2)2 =

1

4

∑

i,j

ϵ1iϵ2iϵ1jϵ2j

=
1

4

∑

i,j

(

δij −
pipj
|p⃗ |2

)

(

δij −
kikj

|⃗k |2

)

=
1

2
(8)

with no angular dependence. Thus, we have the cross section,

σ =
1

8π

1

s

|p⃗ ′|
|p⃗ |

e4, (9)

arXiv:2010.15431 

no state around 3840-3860 MeV (?)

Figure 22: Summary of ordinary charmonia, XYZ and pentaquarks listed by the PDG [1].

Such a state was actually claimed to be narrower in other analyses [277, 278] with �p = 120MeV, but
no consensus was reached [279, 281, 282]. A recent CLAS analysis finds actually two N(1720) with similar
mass and widths, but di↵erent Q

2 behavior in electroproduction [283]. The ANL-Osaka analysis finds two
poles with masses 1703 and 1763MeV and widths 70 and 159MeV, respectively [284]. Since quark models
predict several 3/2+ states in this energy region [18, 261, 262, 264], it is possible that the data analyses
are not able to resolve each pole individually. Further research is necessary to establish the number and
properties of resonances in this energy region, before discussing their nature.

2.5. Heavy quark spectroscopy

The unexpected discovery of the X(3872) in 2003 ushered in a new era in hadron spectroscopy [285].
Experiments have claimed a long list of states, collectively called XYZ, that appear mostly in the char-
monium sector, but do not respect the expectations for ordinary QQ̄ states, summarized in Figure 22. An
exotic composition is thus likely required [3, 9]. Several of these states appear as relatively narrow peaks
in proximity of open charm threshold, suggesting that hadron-hadron dynamics can play a role in their
formation [4, 286]. Alternatively, quark-level models also predict the existence of supernumerary states, by
increasing the number of quark/gluon constituents [2]. The recent discovery of a doubly-heavy T

+
cc [287, 288]

and of a fully-heavy X(6900) [289] states make the whole picture extremely rich. Having a comprehensive
description of these states will improve our understanding of the nonperturbative features of QCD. Most
of the analyses from Belle and BaBar su↵ered from limited statistics, and strong claims were sometimes
made with simplistic models on a handful of events. Currently running experiments like LHCb and BESIII
have overcome this issue, providing extremely precise datasets that also require more sophisticated analysis
methods and theory inputs. The status of ordinary and exotic charmonia is summarized in Figure 22. De-

30

X(3960) { → DsDs} 
X(3930) { → DD} 
X(3915) { → ψω}

?
ɣɣ → DD



Born term structure for ɣ ɣ to 𝛑 𝛑 58

where
Iλ
JJ ′(Z) =

∫ Z

0

dz P λ
J (z)P

λ′

J ′ (z) . (8)

In Fig. 1 we showΣ(Z = 0.6) from the Belle data [13, 14] as a function of dipion massm(ππ) =√
s.

Figure 1: The sum of the π+π− and π0π0 integrated cross-sections, Σ(0.6), Eq. (7), with Z =
0.6 from the Belle results of [13, 14]. At present the line is to guide the eye: it is our solution I.

Since the I = 2 amplitude has not only no known direct channel resonances, but all indications
are that it is smooth, it is natural to associate any structures in Σ(Z) with dynamics in the I = 0
ππ channel. Beyond the near threshold enhancement from the Born component, the data in Fig. 1
show two clear peaks. The largest around 1250 MeV is associated with the spin-2 f2(1270)
resonance. Two photon collisions favor the production of tensor mesons, and the f2(1270),
having ππ as its dominant decay mode, appears very strongly. However, one sees that the
position of the peak is shifted and the width larger for this enhancement, than the nominal PDG
values [43]. This is because with Z < 1 in Eq. (7) there are important S − D0 interferences
within the I = 0 channel, that we will discuss later. The second much smaller peak is seen
just below 1 GeV. This is associated with the appearance of the f0(980). The f0(980) is an
example of a particular type of resonance that is strongly coupled to a nearby opening channel.
Many similar kinds of states are now being discovered in channels dominated by hidden charm
and beauty [44, 45, 46]. As a consequence of its proximity to the KK threshold, the f0(980)

6
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Figure 23: ⇡⇡ scattering S0-wave phase shift. We show the central value of the Roy equation solution with chiral
symmetry constraints in [99] (CGL) and [119] (Moussallam) versus the central values of the Constrained Fits to Data in
[117] (CFD). Note the fairly good agreement of these approaches.

course, once these equations had been implemented in the physical region, the analytic extension
is straightforward, or even easier, since the principal values which were needed on the real axis
are no longer present. In addition, the residue of the pole in the second Riemann sheet can be
easily calculated and related, via Eq.22, to the coupling of the resonance to two pions g�⇡⇡.

At this point it is important to emphasize that making the analytic extension to the complex
plane by means of a partial wave dispersion relation is model independent because in that way a
continuation to the complex plane by means of a particular functional form or model is avoided.
The only relevant issue is to have a data description which is consistent with dispersion relations
in the physical region and then the analytic continuation to complex values of s is performed with
the dispersive integral, whose only input lies on the real axis. Usually one uses physically moti-
vated functional forms, or simple polynomials at di↵erent energies which are carefully matched
onto each other at di↵erent physical regions, but a spline or a curve drawn by hand would equally
do as long as it satisfied dispersion relations and described the data. Note that these functional
forms may not have an analytic continuation to the complex plane if they are made by matching
pieces, or, if made from models, these may have di↵erent analytic structures depending on what
resonances or poles one starts from. Therefore, when using models or particular functional forms
instead of dispersion relations, the results for the poles can be very model dependent. Of course,
if a resonance is relatively narrow and well isolated, simple parameterizations can provide a good
approximation, but the � is extremely wide and thus the analytic continuation has to be made
very carefully. In particular, as discussed in Sec.2.3.2, it is important to have the left cut under
control to claim precision. Certainly there are many models that make very reasonable analytic
extensions and approximations, many of which we will review in the following sections, but un-
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FIG. 1: Born terms for the γγ → DD̄ reaction. (a) the contact term, (b) D meson exchange in the t-channel, and (c) D meson
exchange in the u channel.

for about a range of 144 MeV, from the DD̄ threshold to 3880 MeV. The model for the process γγ → DD̄ combines
the Born terms: the contact term, and the D meson exchange in the t and u channels, as shown in Fig. 1.
Contrary to the γγ → π+π−, the D-exchange terms are now here much smaller than those of π-exchange of Ref. [25],

because we have the denominator in the D meson propagator at threshold,

1

(q0)2 − (q⃗ )2 −m2
D

, (3)

where q = (q0, q⃗ ) is the four-momentum of the exchanged D meson, and we have q0 = p0 − p′0 = 0 and |q⃗ | = |p⃗ | =
p0 ≈ mD at the DD̄ threshold. So we have,

1

0−m2
D −m2

D

≈
1

−2m2
D

, (4)

which is much smaller than 1/(−2m2
π) in absolute value.

These terms have also energy dependence, because we have the vertex with the term ϵ · (p′ − q), which in the
Coulomb gauge ϵ0 = 0 and ϵ⃗ · p⃗ = 0 for the photon, which we use to evaluate, is given by,

ϵ⃗ · (q⃗ − p⃗ ′) = ϵ⃗ · (q⃗ + p⃗ ′ − 2p⃗ ′) = −2ϵ⃗ · p⃗ ′. (5)

In the limited range of the DD̄ invariant masses that we consider, p⃗ ′ is small and one can easily see that the
contribution of the D-exchange terms are smaller than 3% of the contact term of Fig. 1(a), 2e2ϵ⃗1 · ϵ⃗2. Hence we
neglect these exchange terms and take the amplitude as,

Mγγ→D+D− = 2e2ϵ⃗1 · ϵ⃗2. (6)

Thus, we will neglect the contributions of Figs. 1(b) and (c) in this work.
In addition, there are also other possible exchanges of D∗ resonances with anomalous terms but again, the denom-

inator of the propagators are large and the terms are small close to the threshold.
We have the differential cross section for the reaction γγ → DD̄,

dσ

dΩ
=

1

64π2

1

s

|p⃗ ′|
|p⃗ |

¯∑|M|2

=
1

64π2

1

s

|p⃗ ′|
|p⃗ |

¯∑|2e2 ϵ⃗1 · ϵ⃗2|2, (7)

where we average the polarization vectors of the transverse photons,

¯∑
(⃗ϵ1 · ϵ⃗2)2 =

1

4

∑

i,j

ϵ1iϵ2iϵ1jϵ2j

=
1

4

∑

i,j

(

δij −
pipj
|p⃗ |2

)

(

δij −
kikj

|⃗k |2

)

=
1

2
(8)

with no angular dependence. Thus, we have the cross section,

σ =
1

8π

1

s

|p⃗ ′|
|p⃗ |

e4, (9)

extra structure at threshold, 
not linked to a resonance 
or bound state

Dai and Pennington, arXiv:1404.7524

J. Pelaez, arXiv:1510.00653
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• BaBar, Belle - resonance around 3915 MeV in

8

for the relevant ψ(2S) and J/ψ decays [8]. The expected
number of background events from such process is smaller
than 0.9 at 90% confidence level (CL).
The detection efficiency depends on m(J/ψω) and θ∗ℓ ,

where θ∗ℓ is the angle between the direction of the posi-
tively charged lepton from J/ψ decay (ℓ+) and the beam
axis in the J/ψω rest frame. Since we select events in
which the e+ and e− beam particles are scattered at
small angles, the two-photon axis is approximately the
same as the beam axis. Therefore we use the beam axis
to determine θ∗ℓ .
We parameterize the efficiency dependence with a two-

dimensional (m(J/ψω), θ∗ℓ ) histogram. We label MC
events where the reconstructed decay particles are suc-
cessfully matched to the generated ones as truth-matched
events. The detection efficiency in each histogram bin is
defined as the ratio between the number of truth-matched
MC events that satisfy the selection criteria and the num-
ber of MC events that were generated for that bin.
The m(J/ψω) spectrum is shown in Fig. 4, where

each event is weighted to account for detector efficiency,
which is almost uniform as a function of the J/ψω mass.
The event weight is equal to ε/ε(m(J/ψω), θ∗ℓ ), where
ε(m(J/ψω), θ∗ℓ ) is the m(J/ψω)- and θ∗ℓ -dependent effi-
ciency value and ε is a common scaling factor that en-
sures all the weights are O(1), since weights far from
one can cause the estimate of the statistical uncertainty
to be incorrect [21]. We observe a prominent peak near
3915 MeV/c2 over a small background. No evident struc-
ture is observed around 3872 MeV/c2.
We perform an extended unbinned maximum-

likelihood fit to the efficiency-corrected m(J/ψω) spec-
trum to extract the resonance yield and parameters. In
the likelihood function L there are two components: one
for the X(3915) signal and one for the non-resonant
J/ψω contribution (NR). The probability density func-
tion (PDF) for the signal component is defined by the
convolution of an S-wave relativistic Breit-Wigner dis-
tribution with a detector resolution function. The NR
contribution is taken to be proportional to Pbg(m) =
p∗(m) × exp[−δp∗(m)], where p∗(m) is the J/ψ momen-
tum in the rest frame of a J/ψω system with an invariant
mass m, δ is a fit parameter, and m = m(J/ψω). The
signal and NR yields, the X(3915) mass and width, and
δ are free parameters in the fit.
We use truth-matched MC events to determine the

signal PDF detector resolution function. The signal
detector-resolution PDF is described by the sum of two
Gaussian shapes for the X(3915) and the sum of a Gaus-
sian plus a Crystal Ball function [22] for the X(3872).
The parameters of the resolution functions are deter-
mined from fits to truth-matched MC events. The
widths of the Gaussian core components are 5.7 MeV and
4.5 MeV, respectively, for X(3915) and X(3872). No sig-
nificant difference in the resolution function parameters
is observed for the different J/ψ decay modes. The pa-
rameters of the resolution functions are fixed to their MC
values in the maximum-likelihood fit.

The fitted distribution from the maximum-likelihood
fit to the efficiency-correctedm(J/ψω) spectrum is shown
in Fig. 4. We observe 59±10 signal events; the measured
X(3915) mass and width are (3919.4± 2.2) MeV/c2 and
(13 ± 6) MeV, respectively, where the uncertainties are
statistical only. We add an X(3872) component, mod-
eled as a P -wave relativistic Breit-Wigner with mass
3872 MeV/c2 and width 2 MeV [8], convoluted with
the detector resolution function. No significant change
in the result is observed with the addition of this com-
ponent, whose yield is estimated to be 1 ± 4 events.
An excess of events over the fitted NR is observed at
m(J/ψω) ∼ 4025 MeV/c2. If we add a resonant compo-
nent in the likelihood function to fit this excess, modeled
as a Gaussian having free parameters, we obtain a signal
yield of 5± 3 events.
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FIG. 4: The efficiency-corrected m(J/ψω) distribution of se-
lected events (solid points). The solid line represents the
total fit function. The dashed line is the NR contribution.
The shaded histogram is the non-J/ψω background defined
in the text as B(5) and estimated from sidebands. The verti-
cal dashed (red) line is placed at m(J/ψω) = 3.872 GeV/c2.

V. ANGULAR ANALYSIS OF THE X(3915)

We first attempt to discriminate between JP = 0± and
JP = 2+ by using the Rosner [23] predictions. In addi-
tion to the previously defined θ∗ℓ we consider the follow-
ing two angles: θ∗n defined as the angle between the nor-
mal to the decay plane of the ω (n⃗) and the two-photon
axis, and θln defined as the angle between the lepton ℓ+

from J/ψ decay and the ω decay normal (see Fig. 5).
To obtain the normal to the ω decay plane we boost the
two pions from the ω decay into the ω rest frame and
obtain n⃗ by the cross product vector of the two charged
pions. A projection of the efficiency values over cosθ∗ℓ in
the X(3915) signal region is shown in Fig. 6(a). The pro-
jections of the efficiency over the angles θ∗n and θln are
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Figure 22: Summary of ordinary charmonia, XYZ and pentaquarks listed by the PDG [1].

Such a state was actually claimed to be narrower in other analyses [277, 278] with �p = 120MeV, but
no consensus was reached [279, 281, 282]. A recent CLAS analysis finds actually two N(1720) with similar
mass and widths, but di↵erent Q

2 behavior in electroproduction [283]. The ANL-Osaka analysis finds two
poles with masses 1703 and 1763MeV and widths 70 and 159MeV, respectively [284]. Since quark models
predict several 3/2+ states in this energy region [18, 261, 262, 264], it is possible that the data analyses
are not able to resolve each pole individually. Further research is necessary to establish the number and
properties of resonances in this energy region, before discussing their nature.

2.5. Heavy quark spectroscopy

The unexpected discovery of the X(3872) in 2003 ushered in a new era in hadron spectroscopy [285].
Experiments have claimed a long list of states, collectively called XYZ, that appear mostly in the char-
monium sector, but do not respect the expectations for ordinary QQ̄ states, summarized in Figure 22. An
exotic composition is thus likely required [3, 9]. Several of these states appear as relatively narrow peaks
in proximity of open charm threshold, suggesting that hadron-hadron dynamics can play a role in their
formation [4, 286]. Alternatively, quark-level models also predict the existence of supernumerary states, by
increasing the number of quark/gluon constituents [2]. The recent discovery of a doubly-heavy T

+
cc [287, 288]

and of a fully-heavy X(6900) [289] states make the whole picture extremely rich. Having a comprehensive
description of these states will improve our understanding of the nonperturbative features of QCD. Most
of the analyses from Belle and BaBar su↵ered from limited statistics, and strong claims were sometimes
made with simplistic models on a handful of events. Currently running experiments like LHCb and BESIII
have overcome this issue, providing extremely precise datasets that also require more sophisticated analysis
methods and theory inputs. The status of ordinary and exotic charmonia is summarized in Figure 22. De-
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Figure 22: Summary of ordinary charmonia, XYZ and pentaquarks listed by the PDG [1].

Such a state was actually claimed to be narrower in other analyses [277, 278] with �p = 120MeV, but
no consensus was reached [279, 281, 282]. A recent CLAS analysis finds actually two N(1720) with similar
mass and widths, but di↵erent Q

2 behavior in electroproduction [283]. The ANL-Osaka analysis finds two
poles with masses 1703 and 1763MeV and widths 70 and 159MeV, respectively [284]. Since quark models
predict several 3/2+ states in this energy region [18, 261, 262, 264], it is possible that the data analyses
are not able to resolve each pole individually. Further research is necessary to establish the number and
properties of resonances in this energy region, before discussing their nature.

2.5. Heavy quark spectroscopy

The unexpected discovery of the X(3872) in 2003 ushered in a new era in hadron spectroscopy [285].
Experiments have claimed a long list of states, collectively called XYZ, that appear mostly in the char-
monium sector, but do not respect the expectations for ordinary QQ̄ states, summarized in Figure 22. An
exotic composition is thus likely required [3, 9]. Several of these states appear as relatively narrow peaks
in proximity of open charm threshold, suggesting that hadron-hadron dynamics can play a role in their
formation [4, 286]. Alternatively, quark-level models also predict the existence of supernumerary states, by
increasing the number of quark/gluon constituents [2]. The recent discovery of a doubly-heavy T

+
cc [287, 288]

and of a fully-heavy X(6900) [289] states make the whole picture extremely rich. Having a comprehensive
description of these states will improve our understanding of the nonperturbative features of QCD. Most
of the analyses from Belle and BaBar su↵ered from limited statistics, and strong claims were sometimes
made with simplistic models on a handful of events. Currently running experiments like LHCb and BESIII
have overcome this issue, providing extremely precise datasets that also require more sophisticated analysis
methods and theory inputs. The status of ordinary and exotic charmonia is summarized in Figure 22. De-
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Figure 4: Mass spectra of (top) D0D0 and (bottom) D+D� candidates in the high-mass
3.80 < mDD < 4.20GeV/c2 region. The result of the simultaneous fit described in the text
is superimposed.

fit in the narrow 3.80 < mDD < 3.88GeV/c2 region. The mass and the natural width of
the �c2(3930) signals in the D0D0 and D+D� final states and the slope of the background
exponential function are common parameters and all other parameters are allowed to
vary independently. The result of the fit of this model to the data is shown in Fig. 4 and
the resulting parameters of interest are summarised in Table 2. If the wide peak in Fig. 4
is instead assumed to be spin-0 then the mass decreases by 0.12MeV/c2 while variations
in the width and the uncertainties in the mass and width are negligible.

Table 2: Yields, mass and width of the �c2(3920) state from the fit to DD mass spectra in
the high-mass 3.88 < mDD < 4.20GeV/c2 region. Uncertainties are statistical only.

N�c2(3930) [103] m�c2(3930) [MeV/c2] ��c2(3930) [MeV]

D0D0 4.7± 0.5
3921.90± 0.55 36.64± 1.88

D+D� 13.0± 0.6
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Figure 22: Summary of ordinary charmonia, XYZ and pentaquarks listed by the PDG [1].

Such a state was actually claimed to be narrower in other analyses [277, 278] with �p = 120MeV, but
no consensus was reached [279, 281, 282]. A recent CLAS analysis finds actually two N(1720) with similar
mass and widths, but di↵erent Q

2 behavior in electroproduction [283]. The ANL-Osaka analysis finds two
poles with masses 1703 and 1763MeV and widths 70 and 159MeV, respectively [284]. Since quark models
predict several 3/2+ states in this energy region [18, 261, 262, 264], it is possible that the data analyses
are not able to resolve each pole individually. Further research is necessary to establish the number and
properties of resonances in this energy region, before discussing their nature.

2.5. Heavy quark spectroscopy

The unexpected discovery of the X(3872) in 2003 ushered in a new era in hadron spectroscopy [285].
Experiments have claimed a long list of states, collectively called XYZ, that appear mostly in the char-
monium sector, but do not respect the expectations for ordinary QQ̄ states, summarized in Figure 22. An
exotic composition is thus likely required [3, 9]. Several of these states appear as relatively narrow peaks
in proximity of open charm threshold, suggesting that hadron-hadron dynamics can play a role in their
formation [4, 286]. Alternatively, quark-level models also predict the existence of supernumerary states, by
increasing the number of quark/gluon constituents [2]. The recent discovery of a doubly-heavy T

+
cc [287, 288]

and of a fully-heavy X(6900) [289] states make the whole picture extremely rich. Having a comprehensive
description of these states will improve our understanding of the nonperturbative features of QCD. Most
of the analyses from Belle and BaBar su↵ered from limited statistics, and strong claims were sometimes
made with simplistic models on a handful of events. Currently running experiments like LHCb and BESIII
have overcome this issue, providing extremely precise datasets that also require more sophisticated analysis
methods and theory inputs. The status of ordinary and exotic charmonia is summarized in Figure 22. De-
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Figure 22: Summary of ordinary charmonia, XYZ and pentaquarks listed by the PDG [1].

Such a state was actually claimed to be narrower in other analyses [277, 278] with �p = 120MeV, but
no consensus was reached [279, 281, 282]. A recent CLAS analysis finds actually two N(1720) with similar
mass and widths, but di↵erent Q

2 behavior in electroproduction [283]. The ANL-Osaka analysis finds two
poles with masses 1703 and 1763MeV and widths 70 and 159MeV, respectively [284]. Since quark models
predict several 3/2+ states in this energy region [18, 261, 262, 264], it is possible that the data analyses
are not able to resolve each pole individually. Further research is necessary to establish the number and
properties of resonances in this energy region, before discussing their nature.

2.5. Heavy quark spectroscopy

The unexpected discovery of the X(3872) in 2003 ushered in a new era in hadron spectroscopy [285].
Experiments have claimed a long list of states, collectively called XYZ, that appear mostly in the char-
monium sector, but do not respect the expectations for ordinary QQ̄ states, summarized in Figure 22. An
exotic composition is thus likely required [3, 9]. Several of these states appear as relatively narrow peaks
in proximity of open charm threshold, suggesting that hadron-hadron dynamics can play a role in their
formation [4, 286]. Alternatively, quark-level models also predict the existence of supernumerary states, by
increasing the number of quark/gluon constituents [2]. The recent discovery of a doubly-heavy T

+
cc [287, 288]

and of a fully-heavy X(6900) [289] states make the whole picture extremely rich. Having a comprehensive
description of these states will improve our understanding of the nonperturbative features of QCD. Most
of the analyses from Belle and BaBar su↵ered from limited statistics, and strong claims were sometimes
made with simplistic models on a handful of events. Currently running experiments like LHCb and BESIII
have overcome this issue, providing extremely precise datasets that also require more sophisticated analysis
methods and theory inputs. The status of ordinary and exotic charmonia is summarized in Figure 22. De-
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Figure 2: Background-subtracted invariant-mass distributions (top left) m(D+
s D

�
s ), (top right)

m(D+
s K

+) and (bottom) m(D�
s K

+) for the B+! D+
s D

�
s K

+ signal. The projections of the fit
with the baseline amplitude model are also shown.

value of m is below the threshold of the channel j, i.e. q2j < 0, an analytic continuation

is applied for qj = i
q
�q2j [55, 56]. The total width of the resonance is calculated as

�0 =
P

j gj⇢j(M0). In the baseline model, only the D+
s D

�
s channel (j = 1) is included in

the Flatté-like parameterisation.
Other resonances are modelled by a relativistic Breit–Wigner function BW(m | M0,�0)

with a mass-dependent width [32]. The radius of each resonance entering the Blatt–
Weisskopf barrier factor [57–59] is set to 3GeV�1, corresponding to about 0.6 fm.

The total probability density function is the squared modulus of the total decay
amplitude multiplied by the e�ciency, normalised to ensure that the integral over the
Dalitz plot is unity. The fit fraction Fi expresses the fraction of the total rate due to
the component i, and the interference fraction Iij describes the interference between
components i and j. They are defined in Eqs. (18) and (19) of Ref. [53], such thatP

i Fi +
P

i<j Iij = 1.
As shown in Fig. 2, the two-body mass distributions are well modelled by the baseline

amplitude fit. The corresponding numerical results are summarised in Table 1, including
the mass, width, fit fraction, and significance (S) of each component. The significance
of a given component is evaluated by assuming that the change of twice the negative
log-likelihood (�2 lnL) between the baseline fit and the fit without that component
obeys a �2 distribution, where the number of degrees of freedom (n.d.f.) is given by the
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Figure 22: Summary of ordinary charmonia, XYZ and pentaquarks listed by the PDG [1].

Such a state was actually claimed to be narrower in other analyses [277, 278] with �p = 120MeV, but
no consensus was reached [279, 281, 282]. A recent CLAS analysis finds actually two N(1720) with similar
mass and widths, but di↵erent Q

2 behavior in electroproduction [283]. The ANL-Osaka analysis finds two
poles with masses 1703 and 1763MeV and widths 70 and 159MeV, respectively [284]. Since quark models
predict several 3/2+ states in this energy region [18, 261, 262, 264], it is possible that the data analyses
are not able to resolve each pole individually. Further research is necessary to establish the number and
properties of resonances in this energy region, before discussing their nature.

2.5. Heavy quark spectroscopy

The unexpected discovery of the X(3872) in 2003 ushered in a new era in hadron spectroscopy [285].
Experiments have claimed a long list of states, collectively called XYZ, that appear mostly in the char-
monium sector, but do not respect the expectations for ordinary QQ̄ states, summarized in Figure 22. An
exotic composition is thus likely required [3, 9]. Several of these states appear as relatively narrow peaks
in proximity of open charm threshold, suggesting that hadron-hadron dynamics can play a role in their
formation [4, 286]. Alternatively, quark-level models also predict the existence of supernumerary states, by
increasing the number of quark/gluon constituents [2]. The recent discovery of a doubly-heavy T

+
cc [287, 288]

and of a fully-heavy X(6900) [289] states make the whole picture extremely rich. Having a comprehensive
description of these states will improve our understanding of the nonperturbative features of QCD. Most
of the analyses from Belle and BaBar su↵ered from limited statistics, and strong claims were sometimes
made with simplistic models on a handful of events. Currently running experiments like LHCb and BESIII
have overcome this issue, providing extremely precise datasets that also require more sophisticated analysis
methods and theory inputs. The status of ordinary and exotic charmonia is summarized in Figure 22. De-
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DD*-D*D* coupled channel 
Whyte, Wilson, Thomas 
arXiv:2405.15741

- S and D-wave in JP=1+ 

- virtual bound state below DD* and 
resonance below D*D* 

- (neglecting left cuts)
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what is the mass ordering? 
why are the masses so close? 
why are the widths so different?
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Dπ/DK scattering with SU(3) flavour symmetry 
Yeo, Thomas, Wilson 
arXiv:2403.10498

- S-wave interactions in flavour SU(3) 
3bar, 6, 15bar  

- Virtual bound state sextet pole 
- Also deeply bound 3bar state, similar to 

Ds0(2317), much greater binding°0.005 0.005 0.010 0.015 0.020
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Timelike meson form-factors 
Ortega-Gama, Dudek, Edwards  
arXiv:2407.20617

- Lellouch-Lüscher analysis to extract infinite 
volume scattering amplitude 

- Extended to coupled-channel region 
(KKbar)

spacelike

14

X. TIMELIKE COUPLED-CHANNEL
PRODUCTION AMPLITUDES

The additional constraint provided by the finite-volume
matrix elements for discrete energy levels above KK
threshold allows us to access the � ! KK amplitude in
addition to the � ! ⇡⇡ process at higher energies. The
extension of the finite-volume production formalism to
multiple channels leads to a description of each finite-

volume form-factor, F (L)
n , as a linear combination of the

infinite-volume kaon and pion smooth production func-
tions at s = E?2

n , as indicated in Eq. 10. Since there is no
longer a one-to-one mapping from finite to infinite-volume,
it is necessary to parameterize the energy dependence of
the production functions, and globally describe multiple
finite-volume form-factor values via a �2 minimization,
as proposed in Ref. [44].
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FIG. 14. Pion form factor across spacelike and timelike regions,
and energy-dependent description by Omnès modulated by
the quadratic F⌦(s) of Eq. 31.
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FIG. 15. Timelike pion form-factor described by reference

elastic amplitude via Eq. 26 (green) or via Omnès form (or-
ange). These descriptions share a common phase given by the
scattering amplitude phase-shift shown in the bottom panel.

We implement the e↵ect of the correlated uncertainty
on the finite volume correction factors, r̃n,a, in terms of a
‘systematic’ contribution to the data covariance in the fit
�2,

�2 =
X

n,m

h
F (L)

n �
�
r̃n,⇡⇡F⇡⇡(s) + r̃n,KKFKK(s)

�i

·
�
Cstat. + Csyst.

��1

n,m

·
h
F (L)

m �
�
r̃m,⇡⇡F⇡⇡(s) + r̃m,KKFKK(s)

�i
,

which augments the ‘statistical’ covariance of the F (L)
n .

This ‘systematic’ covariance is computed using the resam-
pled r̃n,a introduced in Section VIII whose data covariance
inherits that of the energy levels. For each energy level,
only the dominant component, a = ⇡⇡ or KK is used to
compute the covariance. The detailed implementation is
presented in Appendix C.

To describe the infinite volume form factors we use
the parameterization of Eq. 5, with the reference coupled-

channel scattering amplitude determined in Sec. V B. The
smooth functions Fa are parameterized with low order
polynomials in s, analogous to Eq. 27,

Fa(s)/m2
⇡ =

NaX

n=0

ha,n ·
⇣

s�s0
s0

⌘n
. (32)

We emphasize here that the function F⇡⇡(s) obtained in
the coupled-channel case does not have to resemble the

timelike
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FIG. 1. Diagrams representing the processes considered in this paper. The spacelike and timelike form factors of the pion are
aspects of a single function of the photon virtuality, f⇡(P 2).

Eq. 6 applicable in both the timelike and spacelike regions,
while to use Eq. 5 in the spacelike region would require
the extrapolation of M(s) into a region where crossed-
channel singularities appear,1 and these would need to be
cancelled by singularities in F(s).

The Omnès form presented above is restricted to elastic

scattering, and the extension to the coupled-channel case
is not so simple, with a set of coupled integral equations
known as the Muskhelishvili–Omnès problem needing to
be solved. For the case presented in this paper, there
is limited benefit to such an undertaking, as we will see
later.

III. FINITE VOLUME FORMALISM

Lattice QCD calculations necessarily work in a finite
spatial volume, and as such do not feature a continuum
of multiparticle states, but rather a discrete spectrum
sensitive to the volume. For energies below three-particle
thresholds, the finite-volume spectrum is related to two-
particle scattering amplitudes by the Lüscher determinant
condition [7–9, 17–29],

det
⇥
M(E) + F�1(E, L)

⇤
= 0 , (7)

where F is a matrix of known functions of essentially
kinematic origin dependent on the L ⇥ L ⇥ L volume of
the periodic lattice, and M is a matrix containing scat-
tering amplitudes, diagonal in partial-waves, but dense in
channel-space when coupled-channels are kinematically
accessible. The finite-volume spectrum, {En(L)}, corre-
sponds to the discrete set of solutions to this equation
for a given M(E), and as such, in general, finite-volume
eigenstates, |niL, cannot be associated with a particular
channel or partial-wave.

We respect the cubic symmetry of the spatial lattice
boundary by computing spectra in irreducible representa-
tions, ‘irreps ’, of the reduced rotational symmetry group,

1
Although in practical parameterizations of M(s) we may choose

not include them when considering only energy regions away from

their influence.

and these contain subductions of multiple values of an-
gular momentum, leading to the partial-wave space in
the determinant condition. More constraint on scatter-
ing amplitudes can be obtained by computing spectra in
frames in which the two-particle system moves relative to
the fixed lattice, and in this case irreps of the little group

that preserves rotations of the cube around the direction
of motion are used.

Parameterizing the energy dependence of partial-wave
scattering amplitudes, M(E), we can solve Eq. 7 for
volumes and irreps in which we have computed the lattice
QCD spectrum, to find ‘model’ spectra. Free parameters
in the amplitudes can then be adjusted to bring the model
spectra into agreement with the computed spectra, thus
providing hadron scattering amplitudes constrained by
QCD dynamics. This approach has been successfully
applied to several systems of coupled-channel scattering,
see Refs. [30–40], with an e�cient approach to solving
Eq. 7 in the coupled-channel case presented in Ref. [41].
The approach is reviewed in Ref. [9].

Production amplitudes where a two-particle state is
generated by the action of a current on the vacuum (or
on a single-particle state), as introduced in the previous
section, can be accessed by computing current matrix
elements featuring in the initial or final state the discrete
finite-volume states discussed above. The relationship of
these finite-volume matrix elements to the infinite volume
amplitudes at the same energy is given by,

�� hn|J µ(x = 0)|0iL

��2 =

1
2EnL3

X
a,b

Hµ
a(En) eRa,b(En, L) Hµ

b (En) , (8)

where the matrix eR, the coupled-channel generalization of
the Lellouch-Lüscher factor [10], is related to the residue
of the finite-volume two-particle propagator at the energy,
En(L), where the propagator has a pole [42, 43]. The
explicit form of the matrix eR is,

eR(En, L) = 2En · lim
E!En

E � En

M(E) + F�1(E, L)
,

where the matrix in the denominator can only have a sin-
gle vanishing eigenvalue at En in order to generate simple

poles in correlation functions, consistent with causality.
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while to use Eq. 5 in the spacelike region would require
the extrapolation of M(s) into a region where crossed-
channel singularities appear,1 and these would need to be
cancelled by singularities in F(s).

The Omnès form presented above is restricted to elastic

scattering, and the extension to the coupled-channel case
is not so simple, with a set of coupled integral equations
known as the Muskhelishvili–Omnès problem needing to
be solved. For the case presented in this paper, there
is limited benefit to such an undertaking, as we will see
later.
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sponds to the discrete set of solutions to this equation
for a given M(E), and as such, in general, finite-volume
eigenstates, |niL, cannot be associated with a particular
channel or partial-wave.
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frames in which the two-particle system moves relative to
the fixed lattice, and in this case irreps of the little group

that preserves rotations of the cube around the direction
of motion are used.

Parameterizing the energy dependence of partial-wave
scattering amplitudes, M(E), we can solve Eq. 7 for
volumes and irreps in which we have computed the lattice
QCD spectrum, to find ‘model’ spectra. Free parameters
in the amplitudes can then be adjusted to bring the model
spectra into agreement with the computed spectra, thus
providing hadron scattering amplitudes constrained by
QCD dynamics. This approach has been successfully
applied to several systems of coupled-channel scattering,
see Refs. [30–40], with an e�cient approach to solving
Eq. 7 in the coupled-channel case presented in Ref. [41].
The approach is reviewed in Ref. [9].

Production amplitudes where a two-particle state is
generated by the action of a current on the vacuum (or
on a single-particle state), as introduced in the previous
section, can be accessed by computing current matrix
elements featuring in the initial or final state the discrete
finite-volume states discussed above. The relationship of
these finite-volume matrix elements to the infinite volume
amplitudes at the same energy is given by,
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2EnL3
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b (En) , (8)

where the matrix eR, the coupled-channel generalization of
the Lellouch-Lüscher factor [10], is related to the residue
of the finite-volume two-particle propagator at the energy,
En(L), where the propagator has a pole [42, 43]. The
explicit form of the matrix eR is,
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FIG. 6. S-wave amplitudes for m⇡ ⇠ 239 MeV. Top panel: Central values of the real parts of S0 and S2, both above and
below the two-pion threshold, for all amplitude parameterizations. Those plotted in green correspond to input parameterizations
that produce at least one combination respecting the metric cuts presented above, while all others are plotted in red. Open
circles on axis indicate the locations of Adler zeroes in the leading-order of �PT. Bottom panel: Real parts of the corresponding
dispersive amplitudes for all amplitude combinations respecting the metric cuts presented above. The uncertainty on one
example amplitude is shown by the gray band.

FIG. 7. As Figure 6 but for m⇡ ⇠ 283 MeV.

while the subthreshold behavior is controlled by the kernel
functions (which have correct analytic properties), the
behavior of the dispersed amplitudes below threshold is
rendered free of singularities.

This is illustrated in Figures 6, 7, where the S0 and S2
amplitudes are shown for m⇡ ⇠ 239, 283 MeV. The upper
panels in each case shows the input lattice amplitudes
(where amplitudes that systematically fail the metric cuts
are shown in red) where subthreshold divergences are
observed to be present, as is a significant scatter of behav-
ior such that one can argue that the lattice data (above
threshold, in a single partial-wave) has not constrained in
any reliable way the amplitude behavior far below thresh-
old. On the other hand, in the lower panels, we observe
that all dispersed amplitudes satisfying the metric cuts
show broadly compatible singularity-free behavior below
threshold. The scatter of behaviors of acceptable ampli-
tudes is observed to be at the level of the uncertainty
(shown for one example amplitude by the gray band).

In Fig. 6, for m⇡ ⇠ 239 MeV, both sets of dispersed
amplitudes are observed to feature a zero-crossing be-
low threshold, located near to s/m2

⇡ ⇡ 0.8 for S0 and
s/m2

⇡ ⇡ 1.6 for S2. The presence of such zeroes, known
as “Adler zeroes”, is an expectation of chiral perturbation
theory [54], and we show in the figure the expected loca-
tion at leading order (s/m2

⇡ = 1
2 for S0 and s/m2

⇡ = 2 for
S2). The zeroes in the dispersed amplitudes are observed

to di↵er from these expectations, with a non-negligible
spread.
In Fig. 7, for m⇡ ⇠ 283 MeV, the S2 amplitude is

seen to feature an Adler zero near s/m2
⇡ ⇡ 2.3, while

the S0 amplitude does not appear to cross zero between
the left-hand cut and threshold, in contradiction to the
expectations of leading-order �PT. As such, we would
argue that analyses of lattice QCD obtained spectra using
amplitudes which enforce an Adler zero fixed at the lead-
ing order location are potentially introducing a systematic
bias and this may impact results such as scattering lengths
or low-lying pole positions.

B. Resonance poles in the dispersed amplitudes

The location of the ⇢ resonance pole in the dispersed
P1 amplitudes is found to be compatible with the small
spread observed in the input lattice amplitudes, as ex-
pected for a narrow resonance. On the other hand, for
the � pole in S0, which at m⇡ ⇠ 239 MeV is lying deep in
the complex plane, the acceptable dispersed amplitudes
all have a pole that lies in a much-reduced region, as
shown in Fig. 8. As hoped, the imposition of analyticity
and crossing symmetry, constrained by lattice data in all
relevant isospins and low partial-waves, has led to a ro-
bust extraction of the � pole position, which is observed
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FIG. 8. For m⇡ ⇠ 239 MeV, pole locations in S0 amplitude for lattice-fit amplitudes (gray) and dispersed amplitudes satisfying
the metric cuts described in the text (blue), and modulus of the couplings (as defined in Refs. [5, 29]) extracted from the pole
residues.

FIG. 9. As Figure 8 but for m⇡ ⇠ 283 MeV. Cases in which the pole locations feature very large uncertainties have been
excluded for clarity of presentation.

to be independent of any significant parameterization
dependence.
In the m⇡ ⇠ 283 MeV case (Fig. 9), the S0 lattice

amplitudes indicated that the � could be either a virtual
bound-state5 or a subthreshold resonance, depending
upon parameterization choice, with a spread in pole posi-
tions. Those dispersed amplitudes that meet the metric
cuts show a reduced scatter in pole location. As described
in Ref. [29], when the complex conjugate pole pair of
a subthreshold resonance meet on the real axis below
threshold the pole location’s dependence on the ampli-
tude parameters develops an infinite slope. Near this
point, the slopes are large, causing small uncertainties on
the parameters to become large uncertainties on the pole
location. We do not plot the dispersive pole locations for
these noisy results but merely comment that they are com-
patible with the plotted virtual bound-state cases. In the
current analysis, a definitive statement about whether the
state is a virtual bound-state, or a subthreshold resonance
at this pion mass cannot be made. The ⇡⇡ couplings of
these plotted poles are also presented in the figure, where
we see that the dispersive results have larger statistical
uncertainties but reduced systematic spread with respect
to the conventional analyses presented in Refs. [19, 29].

5 a pole on the real energy axis below threshold on the unphysical
Riemann sheet.

In our m⇡ ⇠ 283 MeV analysis, the selected dispersed
central values find no real Adler zero for S0. In those
cases, a very noisy third pole, companion to the pair of �
poles, appears close to the left-hand cut in the unphysical
Riemann sheet.

In this work, we have considered two pion masses for
which the � appears as a pole in the unphysical Riemann
sheet, while at higher pion masses lattice calculations
indicate that the � is a bound-state pole on the physical
Riemann sheet. In these latter cases, a dispersive analysis
is typically not required to determine accurately the �
pole location, as it is tightly constrained by finite-volume
energy levels lying close to the pole. Nevertheless, it is
possible to construct applicable dispersion relations by
explicitly including the � in T 0(s, t, u) as “fixed” poles
in s and u. The s–channel pole remains a pole when
the amplitude is projected into the s–channel S–wave,
while the u–channel pole generates a cut that is present
in all partial-waves. Recently, Ref. [55] applied dispersion
relations in an approach di↵erent to that explored in this
paper, in a case where a bound-state � is present using
lattice data at m⇡ ⇠ 391 MeV previously published by
hadspec, finding a � pole compatible with the undispersed
analysis in Ref. [28].

Finally, taking the now robust � pole results from
dispersive analysis at m⇡ ⇠ 239, 283 MeV and supple-
menting them with two heavier quark masses where dis-
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