

Electroweak and Top Results from the Tevatron

Junji Naganoma (Waseda University) on behalf of the CDF and D0 collaborations

XLI International Symposium on Multiparticle Dynamics Sept. 29th, 2011

Tevatron RunII

Proton-antiproton collider C.M. Energy: 1.96 TeV

36 bunch crossings 396 ns bunch spacing Peak luminosity: 4x10³² cm⁻²s⁻¹ Started on March 2001 End on September 30 ~10 fb⁻¹ available for analysis for both experiments at the end of data taking.

CDF and D0 Detectors

CDF II Detector

W Boson and Top Quark Mass

- Top quark mass is free parameter in SM.
- SM predicts only relation between W and other experimental observables.

$$M_W = \sqrt{\frac{\pi\alpha}{\sqrt{2}G_F}} \frac{1}{\sin\theta_W \sqrt{1-\Delta r}}$$

• Radiative corrections (Δr) depend on M_t^2 and $log M_H$ through diagrams like:

Precise measurement of M_w and M_t constrain SM Higgs mass.

- $\Delta Mw \approx 0.006 \Delta Mt$ for equal contribution to the Higgs mass uncertainty
- e.g. SUSY can also contribute to Δr .

W(Z) Signature in Detector

Isolated, high pT lepton, missing transverse momentum in W event

Dominant syst. is energy calibration: can be improved with more data.

W Mass Measurement (CDF)

~0.06% precision: aiming for $\Delta M_W = 25 MeV$.

W Mass Measurement Comparison

2011/09/29

Junji Naganoma

Top Quark Pair Signature

Top Pair Decay Channels

ĊS	electron+jets	muon+jets	tau+jets	all-hadronic	
ūd					
ب ا	еτ	μτ	ξī	tau+jets	
'n'	eμ	, QL	μτ	muon+jets	
υ	еÒ	eμ	еτ	electron+jets	
Necal	e^+	μ^+	τ^+	иd	cs

lepton (e, μ) + jets channel = "golden channel"

- Large branching fraction
- Manageable background
- Full reconstruction possible

Top Mass Measurement in l+jets (CDF)

PRL105,252001(2010) 5.6fb⁻¹

- CDF ℓ+jets channel
 - $e,\mu+\geq 4$ jets, ≥ 1 b-tag
 - 1016(1b-tag), 247(≥2b-tag)
- Matrix element method
- in-situ JES calibration
 - $L_i(\vec{y} \mid m_t, \Delta_{\text{JES}})$ for each event
 - $L(m_t, \Delta_{\text{JES}}) = \prod_i L_i(\vec{y} \mid m_t, \Delta_{\text{JES}})$

 $M_t = 173.0 \pm 0.7_{stat} \pm 0.6_{JES} \pm 0.9_{syst} \text{ GeV}$ = 173.0 \pm 1.2 GeV \square \square m_t/m_t \square 0.7\%

World best single measurement

Top Mass Measurements at Tevatron

What top mass did we measure?

arXiv:1104.2887 5.3fb⁻¹

- m_t defined in $t\bar{t}$ MC
 - relate to pole mass or MS mass scheme?
- Extract well-defined m_t from $\sigma_{t\bar{t}}$ measurement in DØ ℓ +jets channel

Tevatron average m_t is more consistent with m_t^{pole}

Top Quark Mass: Tevatron Combination

3.6 – 5.8 fb ⁻¹

$M_t = 173.2 \pm 0.9 \text{ GeV}$

 $\Delta Mt < 1 \text{ GeV}$ $\Delta Mt/Mt \sim 0.5\%$

2011/09/29

Constraint on Higgs Mass

From LEPEWWG

 $m_{\rm H} = 92^{+34}_{-26} \, {\rm GeV} \, (68\% {\rm CL})$ or $< 161 \, {\rm GeV} \, (95\% {\rm CL})$

Junji Naganoma

Di-Boson Measurement

- Couplings predicted by SM
 - Look for deviations: \Rightarrow SUSY, little Higgs, ...

Total & differential cross sections are in good agreement with SM.

WW,WZ,ZZ Cross Sections

Total & differential cross sections are in good agreement with SM.

Top Quark Properties

- Mt is close to EWSB scale $\lambda_t = \sqrt{2}m_t/v \sim 1$ • Top decays before hadronization $\Gamma_t \sim 1.4 \text{ GeV} \gg \Lambda_{\text{QCD}} \sim 200 \text{ MeV}$ \rightarrow direct access to bare quark
- Decay
 - $Br(t \rightarrow Wb)$
 - $Br(t \rightarrow Zq)$
 - Charged Higgs search
 - W helicity
 - Color flow
- Production & Decay
 - Spin correlation

- Intrinsic
 - Mass
 - (already covered)
 - $m_t m_{\bar{t}}$ difference
 - Width
 - Charge
- Production
 - Cross section
 - Forward-backward
 Asymmetry

(covered by M.Takahashi)

Resonance search

m_t - $m_{\bar{t}}$ Difference

- If CPT is conserved, particle and antiparticle must have the same mass.
- Top quark decays before hadronization. \rightarrow Top quark is the only quark with which we cant test this directory.

Top Quark Width

- In SM, t \rightarrow Wb is dominant: $\Gamma_t \sim \Gamma(t \rightarrow Wb) \sim 1.4 \text{ GeV}$
- If unknown decay channel contributes, larger Γ_t will be observed.
 - CDF, ℓ+jet channel
 - From m_t^{rec} distribution
 - Kinematic fit + Template Method

• Extraction from $\sigma_{t-channel}$ (L=2.3fb⁻¹) and Br($t \rightarrow Wb$) (L=0.9fb⁻¹)

Spin Correlation

- Top and anti-top spins are correlated at production
 - in different ways at Tevatron and LHC
- Top quark decays before losing polarization
 - Spin correlation can be measured as angular correlations of decay products: $d\sigma \propto 1 C\cos\theta_+\cos\theta_-$

- Experimental verification of
 - top decaying before losing polarization
- Sensitive to anomalous coupling at $t\bar{t}$ produc

Spin Correlation Measurement

- DØ, dilepton channel (441evt)
- Use lepton flight directions in top rest frame
- Neutrino weighting method + Template fit extract C_{beam}

PLB702,16(2011) **5.4fb⁻¹**

2011/09/29

SM pred.: C_{beam}~0.78

- DØ, dilepton channel (485evt)
- Matrix element method
 - f: fraction of SM spin corr.
 - f=1: SM spin corr.
 - f=0: No corr.

 $f^{SM} = 0.74^{+0.40}_{-0.41}$

Exclude f=0 (no spin corr) at 97.7% CL Corresponding to $C_{\text{beam}} = 0.57 \pm 0.31$

PRL107,032001(2011) 5.4fb⁻¹

Consistent with SM, but statistically limited

- W boson & top masses have been measured in great precision at the Tevatron.
- Various measurements on EW and top quark properties have been performed. results are consistent with SM so far.
- Continue precise measurements not to overlook any hint of new physics.

Backup

CDF ZZ Resonance Search

Two Breakthroughs in Top Mass Measurements

Matrix Element Method

• Use information on leptons and jets maximally $L_i(M_t; y) = N \frac{d\sigma}{d\Phi}(y; M_t)$

$$L(M_t) = \prod_i L_i(M_t)$$

Matrix element with a given top mass gives p.d.f. of observables

Likelihood function of top mass for a given set of observables

in-situ W \rightarrow jj JES calib.

- JES (jet energy scale) calibration using di-jet invariant mass from W
- Incorporate JES into likelihood function
 - $L(M_t) \rightarrow L(M_t, JES)$
 - Turn JES systematics into statistics

Δm_t History at Tevatron

• Systematics also reduced by $1/\sqrt{L}$ by continuous efforts

C_{base}: spin-spin correlation coefficient

$$c_{\rm base} \equiv \frac{N_{\uparrow\downarrow} + N_{\downarrow\uparrow} - N_{\uparrow\uparrow} - N_{\downarrow\downarrow}}{N_{\uparrow\downarrow} + N_{\downarrow\uparrow} + N_{\uparrow\uparrow} + N_{\downarrow\downarrow}}$$

base: quantization axis for top and anti-to off-diagonal, beam, helicity, ...

$$\rightarrow \frac{1}{\sigma} \frac{d^2 \sigma}{d \cos \theta_+ d \cos \theta_-} = \frac{1 + C_{\text{base}} \cos \theta_+ \cos \theta_-}{4}$$