

- almost featureless spectrum
- ullet extends over >10 orders of magnitude
- flux steeply falling down with energy
- ullet \Rightarrow direct detection till $\sim 10^{15}$ eV only
- primary particles protons & nuclei (up to Fe)

- almost featureless spectrum
- extends over > 10 orders of magnitude
- flux steeply falling down with energy
- ullet \Rightarrow direct detection till $\sim 10^{15}$ eV only
- primary particles protons & nuclei (up to Fe)

- almost featureless spectrum
- ullet extends over >10 orders of magnitude
- flux steeply falling down with energy
- ullet \Rightarrow direct detection till $\sim 10^{15}$ eV only
- primary particles protons & nuclei (up to Fe)

- almost featureless spectrum
- ullet extends over >10 orders of magnitude
- flux steeply falling down with energy
- ullet \Rightarrow direct detection till $\sim 10^{15}$ eV only
- primary particles protons & nuclei (up to Fe)

- almost featureless spectrum
- ullet extends over >10 orders of magnitude
- flux steeply falling down with energy
- ullet \Rightarrow direct detection till $\sim 10^{15}$ eV only
- primary particles protons & nuclei (up to Fe)

• flux $\times E^{2.5}$: 'leg'-like shape

- flux $\times E^{2.5}$: 'leg'-like shape
- 'knee' around 3×10^{15} eV (effect of galactic acceleration / propagation)

- flux $\times E^{2.5}$: 'leg'-like shape
- 'knee' around 3×10^{15} eV (effect of galactic acceleration / propagation)
- 'ankle' at
 few × 10¹⁸ eV
 (galactic /
 extragalactic
 transition?)

- flux $\times E^{2.5}$: 'leg'-like shape
- 'knee' around 3×10^{15} eV (effect of galactic acceleration / propagation)
- 'ankle' at few × 10¹⁸ eV (galactic / extragalactic transition?)
- cutoff at $\sim 10^{20}$ eV (interaction with background γ s?)

X-ray image of SNR Cas A

Standard paradigm for galactic CR sources: supernova remnants

- SNRs provide sufficient energy budget for CRs (if > 10% of explosion energy is transferred to CRs)
- known astrophysical mechanism diffusion shock acceleration

Standard paradigm for galactic CR sources: supernova remnants

- SNRs provide sufficient energy budget for CRs (if > 10% of explosion energy is transferred to CRs)
- known astrophysical mechanism diffusion shock acceleration

Standard paradigm for galactic CR sources: supernova remnants

- SNRs provide sufficient energy budget for CRs (if > 10% of explosion energy is transferred to CRs)
- known astrophysical mechanism diffusion shock acceleration

Standard paradigm for galactic CR sources: supernova remnants

- SNRs provide sufficient energy budget for CRs (if > 10% of explosion energy is transferred to CRs)
- known astrophysical mechanism diffusion shock acceleration

- ullet DSA is able to accelerate protons up to the 'knee' ($\sim 10^{15}$ eV)
- ullet \Rightarrow the knee can be the signature of proton acceleration cutoff
- acceleration (by magnetic fields) depends on particle rigidity $E/Z \Rightarrow$ nuclei can be accelerated to (Z-times) higher energies
- \Rightarrow rigidity-dependent partial 'nuclear knees' may be expected (e.g. $E_{He}^{\rm knee}=2E_p^{\rm knee}$, $E_{Fe}^{\rm knee}=26E_p^{\rm knee}$)

Standard paradigm for galactic CR sources: supernova remnants

- SNRs provide sufficient energy budget for CRs (if > 10% of explosion energy is transferred to CRs)
- known astrophysical mechanism diffusion shock acceleration

- \bullet DSA is able to accelerate protons up to the 'knee' $(\sim 10^{15}~\text{eV})$
- ullet \Rightarrow the knee can be the signature of proton acceleration cutoff
- acceleration (by magnetic fields) depends on particle rigidity $E/Z \Rightarrow$ nuclei can be accelerated to (Z-times) higher energies
- \Rightarrow rigidity-dependent partial 'nuclear knees' may be expected (e.g. $E_{He}^{\rm knee}=2E_p^{\rm knee}$, $E_{Fe}^{\rm knee}=26E_p^{\rm knee}$)

Standard paradigm for galactic CR sources: supernova remnants

- SNRs provide sufficient energy budget for CRs (if > 10% of explosion energy is transferred to CRs)
- known astrophysical mechanism diffusion shock acceleration

- ullet DSA is able to accelerate protons up to the 'knee' $(\sim 10^{15} \ {
 m eV})$
- ullet \Rightarrow the knee can be the signature of proton acceleration cutoff
- acceleration (by magnetic fields) depends on particle rigidity $E/Z \Rightarrow$ nuclei can be accelerated to (Z-times) higher energies
- \Rightarrow rigidity-dependent partial 'nuclear knees' may be expected (e.g. $E_{He}^{\rm knee}=2E_p^{\rm knee}$, $E_{Fe}^{\rm knee}=26E_p^{\rm knee}$)

Standard paradigm for galactic CR sources: supernova remnants

- SNRs provide sufficient energy budget for CRs (if > 10% of explosion energy is transferred to CRs)
- known astrophysical mechanism diffusion shock acceleration

- ullet DSA is able to accelerate protons up to the 'knee' $(\sim 10^{15} \ ext{eV})$
- ullet \Rightarrow the knee can be the signature of proton acceleration cutoff
- acceleration (by magnetic fields) depends on particle rigidity $E/Z \Rightarrow$ nuclei can be accelerated to (Z-times) higher energies
- \Rightarrow rigidity-dependent partial 'nuclear knees' may be expected (e.g. $E_{He}^{\rm knee}=2E_p^{\rm knee}$, $E_{Fe}^{\rm knee}=26E_p^{\rm knee}$)

Alternative explanation for the 'knee': propagation effect

- above certain energy CRs aren't efficiently scattered by turbulent magnetic fieds of the Galaxy
- ⇒ CR escape from the Galaxy also produces rigidity-dependent 'knees'

Alternative explanation for the 'knee': propagation effect

- above certain energy CRs aren't efficiently scattered by turbulent magnetic fieds of the Galaxy
- ⇒ CR escape from the Galaxy also produces rigidity-dependent 'knees'

Alternative explanation for the 'knee': propagation effect

- above certain energy CRs aren't efficiently scattered by turbulent magnetic fieds of the Galaxy
- ⇒ CR escape from the Galaxy also produces rigidity-dependent 'knees'

Alternative explanation for the 'knee': propagation effect

- above certain energy CRs aren't efficiently scattered by turbulent magnetic fieds of the Galaxy
- ⇒ CR escape from the Galaxy also produces rigidity-dependent 'knees'

Speculative scenario

- more exotic 'knee' explanations assume a sudden change of hadronic physics above certain energy scale
- ⇒ 'knee' position defined by total energy of the primary particle (independent on Z)

Alternative explanation for the 'knee': propagation effect

- above certain energy CRs aren't efficiently scattered by turbulent magnetic fieds of the Galaxy
- ⇒ CR escape from the Galaxy also produces rigidity-dependent 'knees'

Speculative scenario

- more exotic 'knee' explanations assume a sudden change of hadronic physics above certain energy scale
- ⇒ 'knee' position defined by total energy of the primary particle (independent on Z)

- additional constaints
 from energy losses
 in the source
- ⇒ UHECR sources most likely extragalactic
 - favorable option Active Galactic Nuclei (AGN)

- additional constaints
 from energy losses
 in the source
- ⇒ UHECR sources most likely extragalactic
 - favorable option Active Galactic Nuclei (AGN)

- additional constaints
 from energy losses
 in the source
- ⇒ UHECR sources most likely extragalactic
 - favorable option –
 Active Galactic
 Nuclei (AGN)

nearest to us AGN – Centaurus A:

- additional constaints
 from energy losses
 in the source
- ⇒ UHECR sources most likely extragalactic
- favorable option Active Galactic Nuclei (AGN)

- additional constaints
 from energy losses
 in the source
- → UHECR sources most likely extragalactic
- favorable option Active Galactic Nuclei (AGN)
- CR acceleration possible near the black hole or in a jet/lobe

Pierre Auger Collaboration: correlation of UHECR arrival directions with nearby AGNs at 3σ level [Science 318 (2007) 938]

- correlation angular scale (3°) – consistent with expected deflections for protons
- considerable excess of events in the direction of CenA

Pierre Auger Collaboration: correlation of UHECR arrival directions with nearby AGNs at 3σ level [Science 318 (2007) 938]

- correlation angular scale (3°) – consistent with expected deflections for protons
- considerable excess of events in the direction of CenA

Pierre Auger Collaboration: correlation of UHECR arrival directions with nearby AGNs at 3σ level [Science 318 (2007) 938]

- correlation angular scale (3°) – consistent with expected deflections for protons
- considerable excess of events in the direction of CenA

- however: correlation signal weakened for larger event sample
- now: 2σ deviation from isotropic distribution

- however: correlation signal weakened for larger event sample
- now: 2σ deviation from isotropic distribution

Telescope Array Collaboration: 8 events out of 20 correlate with AGNs [Sagawa, talk at TeVPA-2011]

Telescope Array Collaboration: 8 events out of 20 correlate with AGNs [Sagawa, talk at TeVPA-2011]

 ⇒ consistent both with the isotropy and with the AGN correlation hypothesis

• why restrict oneself with nearby sources?

- why restrict oneself with nearby sources?
- the Universe is filled with 2.7K cosmological background radiation (CMB)

- why restrict oneself with nearby sources?
- the Universe is filled with 2.7K cosmological background radiation (CMB)
- ⇒ UHE protons quickly loose energy on CMB [Greisen, PRL 16 (1966); Zatsepin & Kuzmin, JETP Lett. 4 (1966)]

$$p + \gamma_{\text{CMB}}
ightarrow \left\{ egin{array}{l} p + \pi^0 \\ n + \pi^+ \end{array}
ight.$$

 \Rightarrow beyond ~ 100 Mpc the Universe is opaque for UHECR

- why restrict oneself with nearby sources?
- the Universe is filled with 2.7K cosmological background radiation (CMB)
- ⇒ UHE protons quickly loose energy on CMB [Greisen, PRL 16 (1966); Zatsepin & Kuzmin, JETP Lett. 4 (1966)]

$$p + \gamma_{\text{CMB}} \rightarrow \left\{ egin{array}{l} p + \pi^0 \\ n + \pi^+ \end{array}
ight.$$

- \Rightarrow beyond ~ 100 Mpc the Universe is opaque for UHECR
- for a uniform distribution of extragalactic CR sources results in a spectral cutoff at $E\sim5\times10^{19}$ eV (GZK-cutoff)

- why restrict oneself with nearby sources?
- the Universe is filled with 2.7K cosmological background radiation (CMB)
- ⇒ UHE protons quickly loose energy on CMB [Greisen, PRL 16 (1966); Zatsepin & Kuzmin, JETP Lett. 4 (1966)]

$$p + \gamma_{\text{CMB}} \rightarrow \left\{ \begin{array}{l} p + \pi^0 \\ n + \pi^+ \end{array} \right.$$

- \Rightarrow beyond ~ 100 Mpc the Universe is opaque for UHECR
- for a uniform distribution of extragalactic CR sources results in a spectral cutoff at $E\sim5\times10^{19}$ eV (GZK-cutoff)
- in turn, UHE nuclei loose energy via photodisintegration on IR photons: $A + \gamma \rightarrow (A 1) + p/n \Rightarrow$ similar cutoff

Observation of trans-GZK events by the AGASA Collaboration [PRL 81 (1998)]

Observation of trans-GZK events by the AGASA Collaboration [PRL 81 (1998)]

⇒ non-SM explanations of UHECR origin:

- decays of cosmological relics: topological defects, superheavy X-particles
- Lorentz invariance violation
- 'Z-birst': annihilation of UHE (anti-)neutrinos with DM ones

Observation of trans-GZK events by the AGASA Collaboration [PRL 81 (1998)]

 \Rightarrow non-SM explanations of UHECR origin:

- decays of cosmological relics: topological defects, superheavy X-particles
- Lorentz invariance violation
- 'Z-birst': annihilation of UHE (anti-)neutrinos with DM ones

Observation of trans-GZK events by the AGASA Collaboration [PRL 81 (1998)]

- \Rightarrow non-SM explanations of UHECR origin:
 - decays of cosmological relics: topological defects, superheavy X-particles
 - Lorentz invariance violation
 - 'Z-birst': annihilation of UHE (anti-)neutrinos with DM ones

Observation of trans-GZK events by the AGASA Collaboration [PRL 81 (1998)]

- ⇒ non-SM explanations of UHECR origin:
 - decays of cosmological relics: topological defects, superheavy X-particles
 - Lorentz invariance violation
 - 'Z-birst': annihilation of UHE (anti-)neutrinos with DM ones

Now: UHECR cutoff - observed by 3 independent collaborations

Now: UHECR cutoff - observed by 3 independent collaborations

 HiRes Collaboration [PRL 100 (2008)]: GZK-cutoff observed with 5σ significance

Now: UHECR cutoff - observed by 3 independent collaborations

- HiRes Collaboration [PRL 100 (2008)]: GZK-cutoff observed with 5σ significance
- Pierre Auger Collab. [PRL 101 (2008)]: cutoff observed with 6σ significance

Now: UHECR cutoff - observed by 3 independent collaborations

- HiRes Collaboration [PRL 100 (2008)]: GZK-cutoff observed with 5σ significance
- Pierre Auger Collab. [PRL 101 (2008)]: cutoff observed with 6σ significance
- Telescope Array Collab. [Stokes, ICRC-2011]: cutoff observed with 3.9 σ significance

Now: UHECR cutoff - observed by 3 independent collaborations

• trans-GZK story - finally over

- HiRes Collaboration [PRL 100 (2008)]: GZK-cutoff observed with 5σ significance
- Pierre Auger Collab. [PRL 101 (2008)]: cutoff observed with 6σ significance
- Telescope Array Collab. [Stokes, ICRC-2011]: cutoff observed with 3.9σ significance

$$p + \gamma \rightarrow p + e^+ + e^-$$

• UHECR also loose energy via e^+e^- -pair production on CMB:

$$p + \gamma \rightarrow p + e^+ + e^-$$

• if UHECR are protons: spectral 'dip' will be produced

$$p + \gamma \rightarrow p + e^+ + e^-$$

- if UHECR are protons: spectral 'dip' will be produced
- 'dip' model for galactic-extragalactic transition [Berezinsky & Grigor'eva, A&A 199 (1988)]
 - transition takes place well before the 'ankle'

 - energy-relation between GZK cutoff and the 'ankle' (='dip')
 well reproduced

$$p + \gamma \rightarrow p + e^+ + e^-$$

- if UHECR are protons: spectral 'dip' will be produced
- 'dip' model for galactic-extragalactic transition [Berezinsky & Grigor'eva, A&A 199 (1988)]
 - transition takes place well before the 'ankle'
 - observed CR 'ankle' ≡ pair production 'dip'
 - energy-relation between GZK cutoff and the 'ankle' (='dip')
 well reproduced

$$p + \gamma \rightarrow p + e^+ + e^-$$

- if UHECR are protons: spectral 'dip' will be produced
- 'dip' model for galactic-extragalactic transition [Berezinsky & Grigor'eva, A&A 199 (1988)]
 - transition takes place well before the 'ankle'

 - energy-relation between GZK cutoff and the 'ankle' (='dip')
 well reproduced

$$p + \gamma \rightarrow p + e^+ + e^-$$

- if UHECR are protons: spectral 'dip' will be produced
- 'dip' model for galactic-extragalactic transition [Berezinsky & Grigor'eva, A&A 199 (1988)]
 - transition takes place well before the 'ankle'
 - observed CR 'ankle' ≡ pair production 'dip'
 - energy-relation between GZK cutoff and the 'ankle' (='dip')
 well reproduced

$$p + \gamma \rightarrow p + e^+ + e^-$$

- if UHECR are protons: spectral 'dip' will be produced
- 'dip' model for galactic-extragalactic transition [Berezinsky & Grigor'eva, A&A 199 (1988)]
 - transition takes place well before the 'ankle'
 - observed CR 'ankle' ≡ pair production 'dip'
 - energy-relation between GZK cutoff and the 'ankle' (='dip')
 well reproduced
- if UHECR = Fe: no pronounced 'dip'
- ⇒ galactic-extragalactic transition at the 'ankle'

$$p + \gamma \rightarrow p + e^+ + e^-$$

- if UHECR are protons: spectral 'dip' will be produced
- 'dip' model for galactic-extragalactic transition [Berezinsky & Grigor'eva, A&A 199 (1988)]
 - transition takes place well before the 'ankle'
 - observed CR 'ankle' ≡ pair production 'dip'
 - energy-relation between GZK cutoff and the 'ankle' (='dip')
 well reproduced
- if UHECR = Fe: no pronounced 'dip'
- ⇒ galactic-extragalactic transition at the 'ankle'

$$p + \gamma \rightarrow p + e^+ + e^-$$

- if UHECR are protons: spectral 'dip' will be produced
- 'dip' model for galactic-extragalactic transition [Berezinsky & Grigor'eva, A&A 199 (1988)]
 - transition takes place well before the 'ankle'
 - ullet observed CR 'ankle' \equiv pair production 'dip'
 - energy-relation between GZK cutoff and the 'ankle' (='dip')
 well reproduced
- if UHECR = Fe: no pronounced 'dip'
- ⇒ galactic-extragalactic transition at the 'ankle'
- ⇒ measurements of CR composition key to the UHECR puzzle

observations of nuclear-e/m cascades induced by CR particles:

ground-based observations (= thick target experiments)

- ullet primary CR energy \Longleftrightarrow charged particle density at ground
- ullet CR composition \Longleftrightarrow muon density at ground

ground-based observations (= thick target experiments)

- ullet primary CR energy \Longleftrightarrow charged particle density at ground
- ullet CR composition \Longleftrightarrow muon density at ground

ground-based observations (= thick target experiments)

- ullet primary CR energy \Longleftrightarrow charged particle density at ground
- ullet CR composition \Longleftrightarrow muon density at ground

ground-based observations (= thick target experiments)

- primary CR energy ←⇒ charged particle density at ground
- CR composition ←⇒ muon density at ground

measurements of EAS fluorescence light

- primary CR energy ←⇒ integrated light
- CR composition \iff shower maximum position X_{\max}

ground-based observations (= thick target experiments)

- primary CR energy ←⇒ charged particle density at ground
- ◆ CR composition ←⇒ muon density at ground

measurements of EAS fluorescence light

- primary CR energy ⇐⇒ integrated light
- CR composition \iff shower maximum position X_{\max}

ground-based observations (= thick target experiments)

- primary CR energy ←⇒ charged particle density at ground
- CR composition ←⇒ muon density at ground

measurements of EAS fluorescence light

- primary CR energy ←⇒ integrated light
- CR composition \iff shower maximum position X_{\max}

- EAS development driven by interactions of primary / 'leading' secondary particles
- → hadronic cascade= EAS backbone
- secondary cascades well averaged
- observables used for CR composition studies – most sensitive to hadronic physics
- e.g. X_{\max} : to $\sigma_{p-{\rm air}}^{\rm inel}$ and to 'inelasticity' $K_{p-{\rm air}}^{\rm inel}$
- N_{μ} : to $N_{\pi-{
 m air}}^{
 m ch}|_{E\sim \sqrt{E_0}}$

- EAS development driven by interactions of primary / 'leading' secondary particles
- → hadronic cascade= EAS backbone
- secondary cascades well averaged
- observables used for CR composition studies – most sensitive to hadronic physics
- e.g. X_{\max} : to $\sigma_{p-{\rm air}}^{\rm inel}$ and to 'inelasticity' $K_{p-{\rm air}}^{\rm inel}$
- N_{μ} : to $N_{\pi-{
 m air}}^{
 m ch}|_{E\sim \sqrt{E_0}}$

- EAS development driven by interactions of primary / 'leading' secondary particles
- → hadronic cascade= EAS backbone
- secondary cascades well averaged
- observables used for CR composition studies – most sensitive to hadronic physics
- e.g. X_{\max} : to $\sigma_{p-{\rm air}}^{\rm inel}$ and to 'inelasticity' $K_{p-{\rm air}}^{\rm inel}$
- N_{μ} : to $N_{\pi-{
 m air}}^{
 m ch}|_{E\sim \sqrt{E_0}}$

- EAS development driven by interactions of primary / 'leading' secondary particles
- → hadronic cascade= EAS backbone
- secondary cascades well averaged
- observables used for CR composition studies – most sensitive to hadronic physics
- e.g. X_{\max} : to $\sigma_{p-{\rm air}}^{\rm inel}$ and to 'inelasticity' $K_{p-{\rm air}}^{\rm inel}$
- N_{μ} : to $N_{\pi-{
 m air}}^{
 m ch}|_{E\sim \sqrt{E_0}}$

- EAS development driven by interactions of primary / 'leading' secondary particles
- → hadronic cascade= EAS backbone
- secondary cascades well averaged
- observables used for CR composition studies – most sensitive to hadronic physics
- e.g. X_{\max} : to $\sigma_{p-\text{air}}^{\text{inel}}$ and to 'inelasticity' $K_{p-\text{air}}^{\text{inel}}$
- ullet N_{μ} : to $N_{\pi-{
 m air}}^{
 m ch}|_{E\sim \sqrt{E_0}}$

- EAS development driven by interactions of primary / 'leading' secondary particles
- → hadronic cascade= EAS backbone
- secondary cascades well averaged
- observables used for CR composition studies – most sensitive to hadronic physics
- e.g. X_{\max} : to $\sigma_{p-{\rm air}}^{\rm inel}$ and to 'inelasticity' $K_{p-{\rm air}}^{\rm inel}$
- N_{μ} : to $N_{\pi-\text{air}}^{\text{ch}}|_{E\sim\sqrt{E_0}}$

CR composition studies with fluorescence detectors (FD)

- most sensitive to primary particle interactions (via X_{max})
- ullet \Rightarrow suffer from uncertainties of $\left.\sigma_{p-{
 m air}}^{
 m inel}\right|_{E_0}$, $\left.K_{p-{
 m air}}^{
 m inel}\right|_{E_0}$
- seeing it optimistic: probe proton-air (nucleus-air) interactions at maximal energies (up to $\sim 10^{21}~\text{eV})$

CR composition studies with fluorescence detectors (FD)

- most sensitive to primary particle interactions (via X_{max})
- \Rightarrow suffer from uncertainties of $\sigma_{p-{
 m air}}^{
 m inel}\Big|_{E_0}$, $K_{p-{
 m air}}^{
 m inel}\Big|_{E_0}$
- seeing it optimistic: probe proton-air (nucleus-air) interactions at maximal energies (up to $\sim 10^{21}~\text{eV})$

CR composition studies with fluorescence detectors (FD)

- most sensitive to primary particle interactions (via X_{max})
- ullet \Rightarrow suffer from uncertainties of $\left.\sigma_{p-{
 m air}}^{
 m inel}
 ight|_{E_0}$, $\left.K_{p-{
 m air}}^{
 m inel}
 ight|_{E_0}$
- seeing it optimistic: probe proton-air (nucleus-air) interactions at maximal energies (up to $\sim 10^{21}~\text{eV})$

CR composition studies with fluorescence detectors (FD)

- most sensitive to primary particle interactions (via X_{max})
- ullet \Rightarrow suffer from uncertainties of $\left.\sigma_{p-{
 m air}}^{
 m inel}
 ight|_{E_0}$, $\left.K_{p-{
 m air}}^{
 m inel}
 ight|_{E_0}$
- seeing it optimistic: probe proton-air (nucleus-air) interactions at maximal energies (up to $\sim 10^{21}~\text{eV})$

CR composition studies with ground-based detectors (SD)

• most sensitive to interactions of secondary pions (also kaons & (anti-)nucleons) at intermediate energies $(E \sim \sqrt{E_0})$

- N of 'wounded' nucleons per collision: $\langle \mathbf{v}_A \rangle = A \, \sigma_{p-\mathrm{air}}^\mathrm{inel} / \sigma_{A-\mathrm{air}}^\mathrm{inel}$ (valid up to target diffraction)
- ullet nuclear m.f.p. is $\sigma_{p-{
 m air}}^{
 m inel}/\sigma_{A-{
 m air}}^{
 m inel}$ shorter
- however, each nucleon interacts with probability: $w_{\mathrm{int}} = \frac{\sigma_{p-\mathrm{air}}^{\mathrm{inel}}}{\sigma_{A-\mathrm{air}}^{\mathrm{inel}}}$

- *N* of 'wounded' nucleons per collision: $\langle v_A \rangle = A \, \sigma_{p-\text{air}}^{\text{inel}} / \sigma_{A-\text{air}}^{\text{inel}}$ (valid up to target diffraction)
- ullet nuclear m.f.p. is $\sigma_{p-{
 m air}}^{
 m inel}/\sigma_{A-{
 m air}}^{
 m inel}$ shorter
- however, each nucleon interacts with probability: $w_{\mathrm{int}} = \frac{\sigma_{p-\mathrm{air}}^{\mathrm{inel}}}{\sigma_{A-\mathrm{air}}^{\mathrm{inel}}}$

- N of 'wounded' nucleons per collision: $\langle v_A \rangle = A \, \sigma_{p-{
 m air}}^{
 m inel} / \sigma_{A-{
 m air}}^{
 m inel}$ (valid up to target diffraction)
- ullet nuclear m.f.p. is $\sigma_{p-{
 m air}}^{
 m inel}/\sigma_{A-{
 m air}}^{
 m inel}$ shorter
- however, each nucleon interacts with probability: $w_{\text{int}} = \frac{\sigma_{p-\text{air}}^{\text{inel}}}{\sigma_{A-\text{air}}^{\text{inel}}}$

- N of 'wounded' nucleons per collision: $\langle v_A \rangle = A \, \sigma_{p-{
 m air}}^{
 m inel} / \sigma_{A-{
 m air}}^{
 m inel}$ (valid up to target diffraction)
- ullet nuclear m.f.p. is $\sigma_{p-{
 m air}}^{
 m inel}/\sigma_{A-{
 m air}}^{
 m inel}$ shorter
- however, each nucleon interacts with probability: $w_{\mathrm{int}} = \frac{\sigma_{p-\mathrm{air}}^{\mathrm{inel}}}{\sigma_{A-\mathrm{air}}^{\mathrm{inel}}}$

- N of 'wounded' nucleons per collision: $\langle v_A \rangle = A \, \sigma_{p-{
 m air}}^{
 m inel}/\sigma_{A-{
 m air}}^{
 m inel}$ (valid up to target diffraction)
- ullet nuclear m.f.p. is $\sigma_{p-{
 m air}}^{
 m inel}/\sigma_{A-{
 m air}}^{
 m inel}$ shorter
- however, each nucleon interacts with probability: $w_{\mathrm{int}} = \frac{\sigma_{p-\mathrm{air}}^{\mathrm{inel}}}{\sigma_{A-\mathrm{air}}^{\mathrm{inel}}}$
- $\bullet \Rightarrow \langle X_{\max}^A(E) \rangle \simeq \langle X_{\max}^p(E/A) \rangle; \quad \langle N_{e/\mu}^A(E) \rangle \simeq A \cdot \langle N_{e/\mu}^p(E/A) \rangle$

- N of 'wounded' nucleons per collision: $\langle v_A \rangle = A \, \sigma_{p-{
 m air}}^{
 m inel} / \sigma_{A-{
 m air}}^{
 m inel}$ (valid up to target diffraction)
- ullet nuclear m.f.p. is $\sigma_{p-{
 m air}}^{
 m inel}/\sigma_{A-{
 m air}}^{
 m inel}$ shorter
- however, each nucleon interacts with probability: $w_{\text{int}} = \frac{\sigma_{p-\text{air}}^{\text{inel}}}{\sigma_{A-\text{air}}^{\text{inel}}}$
- $\bullet \Rightarrow \langle X_{\max}^A(E) \rangle \simeq \langle X_{\max}^p(E/A) \rangle; \quad \langle N_{e/\mu}^A(E) \rangle \simeq A \cdot \langle N_{e/\mu}^p(E/A) \rangle$
- $\langle X_{\max}^p(E) \rangle \simeq \text{const} + ER \ln E$, $ER \equiv d \langle X_{\max}^p(E) \rangle / dE$; $\langle N_{e/\mu}^p(E/A) \rangle \propto E^{\alpha_{e/\mu}}$, $\alpha_e \simeq 1.1$, $\alpha_\mu \simeq 0.9$

- N of 'wounded' nucleons per collision: $\langle v_A \rangle = A \, \sigma_{p-{
 m air}}^{
 m inel}/\sigma_{A-{
 m air}}^{
 m inel}$ (valid up to target diffraction)
- ullet nuclear m.f.p. is $\sigma_{p-{
 m air}}^{
 m inel}/\sigma_{A-{
 m air}}^{
 m inel}$ shorter
- however, each nucleon interacts with probability: $w_{\text{int}} = \frac{\sigma_{p-\text{air}}^{\text{inel}}}{\sigma_{A-\text{air}}^{\text{inel}}}$
- $\bullet \Rightarrow \langle X_{\max}^A(E) \rangle \simeq \langle X_{\max}^p(E/A) \rangle; \quad \langle N_{e/\mu}^A(E) \rangle \simeq A \cdot \langle N_{e/\mu}^p(E/A) \rangle$
- $\langle X_{\max}^p(E) \rangle \simeq \text{const} + ER \ln E, ER \equiv d \langle X_{\max}^p(E) \rangle / dE;$ $\langle N_{e/\mu}^p(E/A) \rangle \propto E^{\alpha_{e/\mu}}, \alpha_e \simeq 1.1, \alpha_\mu \simeq 0.9$
- $\Rightarrow \langle X^A_{\max}(E) \rangle \simeq \langle X^p_{\max}(E) \rangle ER \ln A \\ \langle N^A_e(E) \rangle \simeq \langle N^p_e(E) \rangle A^{0.1}; \quad \langle N^A_\mu(E) \rangle \simeq \langle N^p_\mu(E) \rangle A^{-0.1} \\ \text{nucleus-induced air showers reach their maxima earlier,}$
 - have more e^{\pm} and less muons

 CR spectra for individual mass groups obtained by the KASCADE Collab. [Astrop. Phys. 24(2005)]

- CR spectra for individual mass groups obtained by the KASCADE Collab. [Astrop. Phys. 24(2005)]
- partial 'knees' seen for light elements

- CR spectra for individual mass groups obtained by the KASCADE Collab. [Astrop. Phys. 24(2005)]
- partial 'knees' seen for light elements
- 'knee' positions seem rigidity-dependent

- CR spectra for individual mass groups obtained by the KASCADE Collab. [Astrop. Phys. 24(2005)]
- partial 'knees' seen for light elements
- 'knee' positions seem rigidity-dependent
- situation with heavier CRs – unclear

 2nd 'knee' observed recently at 10¹⁷ eV by KASCADE-Grande [PRL (2011) in press]

- 2nd 'knee' observed recently at 10¹⁷ eV by KASCADE-Grande [PRL (2011) in press]
- caused by a spectral break for heavy CRs (Fe)

- 2nd 'knee' observed recently at 10¹⁷ eV by KASCADE-Grande [PRL (2011) in press]
- caused by a spectral break for heavy CRs (Fe)
- astrophysical (rigidity-dependent) origin of the CR 'knee' finally confirmed

- spectatular results from HiRes Collab. [PRL (2005); PRL (2010)]: p-dominated composition above 10¹⁸ eV
 - strong support for the 'dip' model: transition from galactic Fe to extragalactic p component at 10¹⁷ eV

- spectatular results from HiRes Collab. [PRL (2005); PRL (2010)]: p-dominated composition above 10¹⁸ eV
 - strong support for the 'dip' model: transition from galactic *Fe* to extragalactic *p* component at 10¹⁷ eV

- spectatular results from HiRes Collab. [PRL (2005); PRL (2010)]: p-dominated composition above 10¹⁸ eV
- supported by data of Telescope Array Collab. [Tameda, ICRC-2011]

- Pierre Auger Collab.: change from light to heavy CRs above 10¹⁹ eV [PRL (2010); Facal San Luis, ICRC-2011]
- interpretation of data strongly model-dependent!

- Pierre Auger Collab.: change from light to heavy CRs above 10¹⁹ eV [PRL (2010); Facal San Luis, ICRC-2011]
- interpretation of data strongly model-dependent!

- Pierre Auger Collab.: change from light to heavy CRs above 10¹⁹ eV [PRL (2010); Facal San Luis, ICRC-2011]
- interpretation of data strongly model-dependent!
- is it possible to reduce model-dependence?!

- Pierre Auger Collab.: change from light to heavy CRs above 10¹⁹ eV [PRL (2010); Facal San Luis, ICRC-2011]
- interpretation of data strongly model-dependent!
- is it possible to reduce model-dependence?!
- yes, by studying shower fluctuations, e.g. $RMS(X_{max})$ [Aloisio, Berezinsky, Blasi & SO, PRD 77 (2008)]

UHECR composition from $RMS(X_{max})$

- RMS(X_{max}) measured by the Pierre Auger Collab. [PRL (2010); Facal San Luis, ICRC-2011]
- model-dependence strongly reduced
 - but: almost pure *Fe* at the highest energies?!

UHECR composition from $RMS(X_{max})$

- RMS(X_{max}) measured by the Pierre Auger Collab. [PRL (2010); Facal San Luis, ICRC-2011]
- model-dependence strongly reduced
 - but: almost pure *Fe* at the highest energies?!

UHECR composition from $RMS(X_{max})$

- RMS($X_{\rm max}$) measured by the Pierre Auger Collab. [PRL (2010); Facal San Luis, ICRC-2011]
- model-dependence strongly reduced
 - but: almost pure *Fe* at the highest energies?!

Alternative approach – study of muon densities at ground

Alternative approach – study of muon densities at ground

 Pierre Auger Collab.: strong muon excess observed compared to model predictions! [Rodriguez, ICRC-2011]

Alternative approach – study of muon densities at ground

 Pierre Auger Collab.: strong muon excess observed compared to model predictions! [Rodriguez, ICRC-2011]

may be UHECR are gold nuclei?!

Alternative approach – study of muon densities at ground

 Pierre Auger Collab.: strong muon excess observed compared to model predictions! [Rodriguez, ICRC-2011]

- may be UHECR are gold nuclei?!
- highly unlikely, rather CR interaction models should be wrong

CR interaction models

- similar physics content for all MC generators used in CR field:
 - multiple scattering
 - soft & hard processes
 - nonlinear effects, e.g. parton shadowing (not in all models)

CR interaction models

- similar physics content for all MC generators used in CR field:
 - multiple scattering
 - soft & hard processes
 - nonlinear effects, e.g. parton shadowing (not in all models)

- similar physics content for all MC generators used in CR field:
 - multiple scattering
 - soft & hard processes
 - nonlinear effects, e.g. parton shadowing (not in all models)

- similar physics content for all MC generators used in CR field:
 - multiple scattering
 - soft & hard processes
 - nonlinear effects, e.g. parton shadowing (not in all models)

- similar physics content for all MC generators used in CR field:
 - multiple scattering
 - soft & hard processes
 - nonlinear effects, e.g. parton shadowing (not in all models)
- representative models:
 - QGSJET (Kalmykov & SO, 1993–1997)
 - SIBYLL 1.7/2.1 (Ahn, Engel, Gaisser, Lipari & Stanev, 1994/1999)
 - QGSJET II-03/04 (SO, 2006/2011)
 - EPOS (Liu, Pierog & Werner, 2006-2011)

- similar physics content for all MC generators used in CR field:
 - multiple scattering
 - soft & hard processes
 - nonlinear effects, e.g. parton shadowing (not in all models)
- representative models:
 - QGSJET (Kalmykov & SO, 1993–1997)
 - SIBYLL 1.7/2.1 (Ahn, Engel, Gaisser, Lipari & Stanev, 1994/1999)
 - QGSJET II-03/04 (SO, 2006/2011)
 - EPOS (Liu, Pierog & Werner, 2006-2011)
- all the models based on similar ideas / qualitative approaches

- similar physics content for all MC generators used in CR field:
 - multiple scattering
 - soft & hard processes
 - nonlinear effects, e.g. parton shadowing (not in all models)
- representative models:
 - QGSJET (Kalmykov & SO, 1993–1997)
 - SIBYLL 1.7/2.1 (Ahn, Engel, Gaisser, Lipari & Stanev, 1994/1999)
 - QGSJET II-03/04 (SO, 2006/2011)
 - EPOS (Liu, Pierog & Werner, 2006-2011)
- all the models based on similar ideas / qualitative approaches
- differ in implementations, theory input, etc. ⇒ in predictions

- similar physics content for all MC generators used in CR field:
 - multiple scattering
 - soft & hard processes
 - nonlinear effects, e.g. parton shadowing (not in all models)
- representative models:
 - QGSJET (Kalmykov & SO, 1993–1997)
 - SIBYLL 1.7/2.1 (Ahn, Engel, Gaisser, Lipari & Stanev, 1994/1999)
 - QGSJET II-03/04 (SO, 2006/2011)
 - EPOS (Liu, Pierog & Werner, 2006-2011)
- all the models based on similar ideas / qualitative approaches
- ullet differ in implementations, theory input, etc. \Rightarrow in predictions
- model updates / cross checks with new data ←necessary → ≥ → occ

• LHC data: $N_{ch}(s)$ rises quicker than predicted by most MCs

[plots from d'Enterria et al., Astrop. Phys. 35 (2011)]

• $N_{\rm ch}(s)$ - described better by CR interaction models

ullet $N_{
m ch}(s)$ - described better by CR interaction models

[plots from d'Enterria et al., Astrop. Phys. 35 (2011)]

 most of the models agree with the data within 10% (surprisingly, the oldest models perform best)

• $N_{\rm ch}(s)$ - described better by CR interaction models

[plots from d'Enterria et al., Astrop. Phys. 35 (2011)]

- most of the models agree with the data within 10% (surprisingly, the oldest models perform best)
- CR MCs: tuned to data over a wide energy range
 - ⇒ loose in details, win in predictive power

• $N_{\rm ch}(s)$ - described better by CR interaction models

[plots from d'Enterria et al., Astrop. Phys. 35 (2011)]

- most of the models agree with the data within 10% (surprisingly, the oldest models perform best)
- CR MCs: tuned to data over a wide energy range
 - ⇒ loose in details, win in predictive power
- however: none of the models describes all the observables

ullet $N_{
m ch}(s)$ - described better by CR interaction models

[plots from d'Enterria et al., Astrop. Phys. 35 (2011)]

however: none of the models describes all the observables

Effect of model retuning to LHC data?

in the following investigated using the QGSJET-II model

• $N_{\rm ch}(s)$ -rise: too steep in QGSJET-II-03

• $N_{\rm ch}(s)$ -rise: too steep in QGSJET-II-03

not easy to correct:

- hadronization parameters tuned at fixed target energies
- general model parameters tuned to cross sections & SFs

• $N_{\rm ch}(s)$ -rise: too steep in QGSJET-II-03

not easy to correct:

- hadronization parameters tuned at fixed target energies
- general model parameters tuned to cross sections & SFs

changing the cutoff Q_0^2 between soft & hard processes $(2.5 \rightarrow 3 \ {\rm GeV}^2)$

- parton saturation operates over a larger kinematic space
- ⇒ slows down multiplicity rise

changing the cutoff Q_0^2 between soft & hard processes $(2.5 \rightarrow 3 \text{ GeV}^2)$

- parton saturation operates over a larger kinematic space
- ⇒ slows down multiplicity rise

changing the cutoff Q_0^2 between soft & hard processes $(2.5 \rightarrow 3 \text{ GeV}^2)$

- parton saturation operates over a larger kinematic space
- ⇒ slows down multiplicity rise

 $dN_{\rm ch}/d\eta$: model-independent results from ATLAS

- qualitatively the same trend
- the level of (dis)agreement varies for different event selections

 $dN_{\rm ch}/d\eta$: model-independent results from ATLAS

- qualitatively the same trend
- the level of (dis)agreement varies for different event selections

 $dN_{\rm ch}/d\eta$: model-independent results from ATLAS:

- ullet overall multiplicity corrections at $\sim 10\%$ level
- → insignificant for air shower predictions

 $dN_{\rm ch}/d\eta$: model-independent results from ATLAS:

- ullet overall multiplicity corrections at $\sim 10\%$ level
- ⇒ insignificant for air shower predictions

- more energy kept in the hadronic cascade
- ullet more cascade steps (no decay for nucleons) \Rightarrow higher N_{μ}

- more energy kept in the hadronic cascade
- more cascade steps (no decay for nucleons) \Rightarrow higher N_{μ}

- more energy kept in the hadronic cascade
- ullet more cascade steps (no decay for nucleons) \Rightarrow higher N_{μ}

- p̄-production at LHC: no excess compared to most model predictions
 - \Rightarrow no corrections for N_{μ}

- more energy kept in the hadronic cascade
- ullet more cascade steps (no decay for nucleons) \Rightarrow higher N_{μ}

- p̄-production at LHC: no excess compared to most model predictions
 - \Rightarrow no corrections for N_{μ}

Production of strange particles

Enhancement of strange particle production may also increase N_{μ}

- more energy channeled into hadronic cascade
- QGSJET-II-03: noticeable correction required by LHC data

Production of strange particles

Enhancement of strange particle production may also increase N_{μ}

- more energy channeled into hadronic cascade
- QGSJET-II-03: noticeable correction required by LHC data

Production of strange particles

Enhancement of strange particle production may also increase N_{μ}

- more energy channeled into hadronic cascade
- QGSJET-II-03: noticeable correction required by LHC data
- higher kaon yields in older models (QGSJET, SIBYLL)

- side-effect of higher
 Q₀²-cutoff: slower rise of cross sections
- e.g., $\sigma_{pp}^{\rm tot}$ consistent with E710 data at 1.8 TeV

- side-effect of higher Q_0^2 -cutoff: slower rise of cross sections
- e.g., σ_{pp}^{tot} consistent with E710 data at 1.8 TeV

- side-effect of higher Q_0^2 -cutoff: slower rise of cross sections
- e.g., σ_{pp}^{tot} consistent with E710 data at 1.8 TeV
- lower cross sections now supported by LHC data

	QGSJET-II-04	QGSJET-II-03	SIBYLL	ATLAS
MBTS _{AND}	54.1	62.3	68.4	51.9 ± 5.7
$MBTS_{OR}$	60.8	69.8	74.7	58.7 ± 6.5

Table: Model predictions for "visible" cross sections (in mb) at $\sqrt{s}=7$ TeV for ATLAS MB triggers: at least one charged hadron at $-3.84 < \eta < -2.09$ and/or at $2.09 < \eta < 3.84$ (MBTS_{AND/OR}):

Similar results by ALICE & CMS:

	QGSJET-II-04	QGSJET-II-03	SIBYLL	ALICE
2.76 TeV	47.4	52.5	56.2	47.2 ± 3.3
7 TeV	55.1	63.6	69.1	54.2 ± 3.8

Comparison with Models and Extrapolation to σ_{inel} (pp)

Proton-air cross section & X_{max}

- reduction of σ^{inel}
 ⇒ slower energy-rise of
 proton-air cross section
- deeper shower penetration

Proton-air cross section & X_{max}

- reduction of $\sigma_{pp}^{\text{inel}}$ \Rightarrow slower energy-rise of proton-air cross section
- deeper shower penetration

Proton-air cross section & X_{max}

- elongation rate (ER) reduced above 1 EeV
 - NB: similarity between QGSJET-II-04 and SIBYLL - misleading (ER-increase will be even larger there)

Proton-air cross section & X_{max}

- elongation rate (ER) reduced above 1 EeV
- NB: similarity between
 QGSJET-II-04 and SIBYLL
 misleading (ER-increase
 will be even larger there)
- however: inelasticityrelated uncertainty remains

Proton-air cross section & X_{max}

- elongation rate (ER) reduced above 1 EeV
- NB: similarity between
 QGSJET-II-04 and SIBYLL
 misleading (ER-increase
 will be even larger there)
- however: inelasticityrelated uncertainty remains
- QGSJET/QGSJET-II-04: large X_{max} difference

- overall effect of the retuning on air shower predictions:
 - ullet less than 10% change for muon number (N_μ)
 - shower maximum $X_{\rm max}$ shifted deeper above 10^{18} eV (by less than 20 g/cm² at 10^{20} eV)

- overall effect of the retuning on air shower predictions:
 - ullet less than 10% change for muon number (N_μ)
 - shower maximum $X_{\rm max}$ shifted deeper above 10^{18} eV (by less than 20 g/cm² at 10^{20} eV)

- overall effect of the retuning on air shower predictions:
 - ullet less than 10% change for muon number (N_μ)
 - shower maximum $X_{\rm max}$ shifted deeper above 10^{18} eV (by less than 20 g/cm² at 10^{20} eV)

- overall effect of the retuning on air shower predictions:
 - ullet less than 10% change for muon number (N_μ)
 - shower maximum $X_{\rm max}$ shifted deeper above 10^{18} eV (by less than 20 g/cm² at 10^{20} eV)
- good news for KASCADE(-Grande):
 - hadronic physics at & around the 'knee' robust

- overall effect of the retuning on air shower predictions:
 - ullet less than 10% change for muon number (N_μ)
 - shower maximum $X_{\rm max}$ shifted deeper above 10^{18} eV (by less than 20 g/cm² at 10^{20} eV)
- good news for KASCADE(-Grande):
 - hadronic physics at & around the 'knee' robust

- overall effect of the retuning on air shower predictions:
 - ullet less than 10% change for muon number (N_μ)
 - shower maximum $X_{\rm max}$ shifted deeper above 10^{18} eV (by less than 20 g/cm² at 10^{20} eV)
- good news for KASCADE(-Grande):
 - hadronic physics at & around the 'knee' robust
- bad news for Pierre Auger:
 - difficult to accomodate the results with collider data
 - last hope for X_{\max} smaller 'inelasticity' K_{inel} (to approach heavy composition with $\langle X_{\max} \rangle$)
 - explanation of muon excess extremely difficult

- overall effect of the retuning on air shower predictions:
 - ullet less than 10% change for muon number (N_μ)
 - shower maximum $X_{\rm max}$ shifted deeper above 10^{18} eV (by less than 20 g/cm² at 10^{20} eV)
- good news for KASCADE(-Grande):
 - hadronic physics at & around the 'knee' robust
- bad news for Pierre Auger:
 - difficult to accomodate the results with collider data
 - last hope for X_{\max} smaller 'inelasticity' K_{inel} (to approach heavy composition with $\langle X_{\max} \rangle$)
 - explanation of muon excess extremely difficult

- overall effect of the retuning on air shower predictions:
 - ullet less than 10% change for muon number (N_μ)
 - shower maximum $X_{\rm max}$ shifted deeper above 10^{18} eV (by less than 20 g/cm² at 10^{20} eV)
- good news for KASCADE(-Grande):
 - hadronic physics at & around the 'knee' robust
- bad news for Pierre Auger:
 - difficult to accomodate the results with collider data
 - last hope for X_{\max} smaller 'inelasticity' K_{inel} (to approach heavy composition with $\langle X_{\max} \rangle$)
 - explanation of muon excess extremely difficult

- overall effect of the retuning on air shower predictions:
 - ullet less than 10% change for muon number (N_μ)
 - shower maximum $X_{\rm max}$ shifted deeper above 10^{18} eV (by less than 20 g/cm² at 10^{20} eV)
- good news for KASCADE(-Grande):
 - hadronic physics at & around the 'knee' robust
- bad news for Pierre Auger:
 - difficult to accomodate the results with collider data
 - last hope for X_{\max} smaller 'inelasticity' K_{inel} (to approach heavy composition with $\langle X_{\max} \rangle$)
 - explanation of muon excess extremely difficult

- considerable progress in studing (ultra-)high energy CRs
 - astrophysical origin of the CR 'knee' established
 - high energy (GZK?) cutoff firmly confirmed
 - first hints towards astrophysical sources of UHECR

- considerable progress in studing (ultra-)high energy CRs
 - astrophysical origin of the CR 'knee' established
 - high energy (GZK?) cutoff firmly confirmed
 - first hints towards astrophysical sources of UHECR

- considerable progress in studing (ultra-)high energy CRs
 - astrophysical origin of the CR 'knee' established
 - high energy (GZK?) cutoff firmly confirmed
 - first hints towards astrophysical sources of UHECR

- considerable progress in studing (ultra-)high energy CRs
 - astrophysical origin of the CR 'knee' established
 - high energy (GZK?) cutoff firmly confirmed
 - first hints towards astrophysical sources of UHECR

- considerable progress in studing (ultra-)high energy CRs
 - astrophysical origin of the CR 'knee' established
 - high energy (GZK?) cutoff firmly confirmed
 - first hints towards astrophysical sources of UHECR
- decisive tool measurements of CR composition
 - however: results depend strongly on hadronic MC models

- considerable progress in studing (ultra-)high energy CRs
 - astrophysical origin of the CR 'knee' established
 - high energy (GZK?) cutoff firmly confirmed
 - first hints towards astrophysical sources of UHECR
- decisive tool measurements of CR composition
 - however: results depend strongly on hadronic MC models

- considerable progress in studing (ultra-)high energy CRs
 - astrophysical origin of the CR 'knee' established
 - high energy (GZK?) cutoff firmly confirmed
 - first hints towards astrophysical sources of UHECR
- decisive tool measurements of CR composition
 - however: results depend strongly on hadronic MC models
- first lessons from LHC data:
 - CR interaction models behave reasonably well
 - only cosmetic corrections seem to be needed
 - ullet exception: reduction of $oldsymbol{\sigma}_{pp}^{
 m inel}$ required (for most of the models)

- considerable progress in studing (ultra-)high energy CRs
 - astrophysical origin of the CR 'knee' established
 - high energy (GZK?) cutoff firmly confirmed
 - first hints towards astrophysical sources of UHECR
- decisive tool measurements of CR composition
 - however: results depend strongly on hadronic MC models
- first lessons from LHC data:
 - CR interaction models behave reasonably well
 - only cosmetic corrections seem to be needed
 - ullet exception: reduction of $\sigma_{pp}^{
 m inel}$ required (for most of the models)

- considerable progress in studing (ultra-)high energy CRs
 - astrophysical origin of the CR 'knee' established
 - high energy (GZK?) cutoff firmly confirmed
 - first hints towards astrophysical sources of UHECR
- decisive tool measurements of CR composition
 - however: results depend strongly on hadronic MC models
- first lessons from LHC data:
 - CR interaction models behave reasonably well
 - only cosmetic corrections seem to be needed
 - ullet exception: reduction of $\sigma_{pp}^{
 m inel}$ required (for most of the models)

- considerable progress in studing (ultra-)high energy CRs
 - astrophysical origin of the CR 'knee' established
 - high energy (GZK?) cutoff firmly confirmed
 - first hints towards astrophysical sources of UHECR
- decisive tool measurements of CR composition
 - however: results depend strongly on hadronic MC models
- first lessons from LHC data:
 - CR interaction models behave reasonably well
 - only cosmetic corrections seem to be needed
 - ullet exception: reduction of $\sigma_{pp}^{
 m inel}$ required (for most of the models)

- considerable progress in studing (ultra-)high energy CRs
 - astrophysical origin of the CR 'knee' established
 - high energy (GZK?) cutoff firmly confirmed
 - first hints towards astrophysical sources of UHECR
- decisive tool measurements of CR composition
 - however: results depend strongly on hadronic MC models
- first lessons from LHC data:
 - CR interaction models behave reasonably well
 - only cosmetic corrections seem to be needed
 - ullet exception: reduction of $\sigma_{pp}^{
 m inel}$ required (for most of the models)
- impact on experimental CR studies:
 - astrophysical origin of the CR 'knee' supported by LHC data (no exotic physics observed at mb level)
 - UHECR compostion puzzle further aggravated: small room to explain the 'muon excess', $X_{\rm max}$ / RMS($X_{\rm max}$) inconsistences

- considerable progress in studing (ultra-)high energy CRs
 - astrophysical origin of the CR 'knee' established
 - high energy (GZK?) cutoff firmly confirmed
 - first hints towards astrophysical sources of UHECR
- ② decisive tool measurements of CR composition
 - however: results depend strongly on hadronic MC models
- first lessons from LHC data:
 - CR interaction models behave reasonably well
 - only cosmetic corrections seem to be needed
 - ullet exception: reduction of $\sigma_{pp}^{
 m inel}$ required (for most of the models)
- impact on experimental CR studies:
 - astrophysical origin of the CR 'knee' supported by LHC data (no exotic physics observed at mb level)
 - UHECR compostion puzzle further aggravated: small room to explain the 'muon excess', $X_{\rm max}$ / RMS($X_{\rm max}$) inconsistences

- considerable progress in studing (ultra-)high energy CRs
 - astrophysical origin of the CR 'knee' established
 - high energy (GZK?) cutoff firmly confirmed
 - first hints towards astrophysical sources of UHECR
- ② decisive tool measurements of CR composition
 - however: results depend strongly on hadronic MC models
- first lessons from LHC data:
 - CR interaction models behave reasonably well
 - only cosmetic corrections seem to be needed
 - ullet exception: reduction of $\sigma_{pp}^{
 m inel}$ required (for most of the models)
- impact on experimental CR studies:
 - astrophysical origin of the CR 'knee' supported by LHC data (no exotic physics observed at mb level)
 - UHECR compostion puzzle further aggravated: small room to explain the 'muon excess', $X_{\rm max}$ / RMS($X_{\rm max}$) inconsistences

- expected/desirable theoretical progress:
 - reliable QCD treatment of 'dense' parton systems \Rightarrow of $N_{ch}(s) \Rightarrow$ muon content of air showers
 - ullet good understanding of 'baryon stopping' mechanism \Rightarrow of $X_{
 m max}$

- expected/desirable theoretical progress:
 - reliable QCD treatment of 'dense' parton systems \Rightarrow of $N_{ch}(s) \Rightarrow$ muon content of air showers
 - ullet good understanding of 'baryon stopping' mechanism \Rightarrow of $X_{
 m max}$

- expected/desirable theoretical progress:
 - reliable QCD treatment of 'dense' parton systems \Rightarrow of $N_{\rm ch}(s) \Rightarrow$ muon content of air showers
 - good understanding of 'baryon stopping' mechanism \Rightarrow of X_{\max}

- expected/desirable theoretical progress:
 - reliable QCD treatment of 'dense' parton systems \Rightarrow of $N_{\mathrm{ch}}(s) \Rightarrow$ muon content of air showers
 - ullet good understanding of 'baryon stopping' mechanism \Rightarrow of $X_{
 m max}$
- expected/desirable input from LHC:
 - measurements of total & diffractive cross sections by TOTEM \Rightarrow reliable understanding of RMS($X_{\rm max}$)
 - ullet studies of 'baryon stopping' by LHCf \Rightarrow understanding of $X_{
 m max}$
 - just an unrealistic dream: pion-proton collisions at LHC?

- expected/desirable theoretical progress:
 - reliable QCD treatment of 'dense' parton systems \Rightarrow of $N_{\mathrm{ch}}(s) \Rightarrow$ muon content of air showers
 - ullet good understanding of 'baryon stopping' mechanism \Rightarrow of $X_{
 m max}$
- expected/desirable input from LHC:
 - measurements of total & diffractive cross sections by TOTEM \Rightarrow reliable understanding of RMS($X_{\rm max}$)
 - ullet studies of 'baryon stopping' by LHCf \Rightarrow understanding of $X_{
 m max}$
 - just an unrealistic dream: pion-proton collisions at LHC?

- expected/desirable theoretical progress:
 - reliable QCD treatment of 'dense' parton systems \Rightarrow of $N_{\mathrm{ch}}(s) \Rightarrow$ muon content of air showers
 - ullet good understanding of 'baryon stopping' mechanism \Rightarrow of $X_{
 m max}$
- expected/desirable input from LHC:
 - measurements of total & diffractive cross sections by TOTEM \Rightarrow reliable understanding of RMS($X_{\rm max}$)
 - ullet studies of 'baryon stopping' by LHCf \Rightarrow understanding of $X_{
 m max}$
 - just an unrealistic dream: pion-proton collisions at LHC?

- expected/desirable theoretical progress:
 - reliable QCD treatment of 'dense' parton systems \Rightarrow of $N_{\mathrm{ch}}(s) \Rightarrow$ muon content of air showers
 - ullet good understanding of 'baryon stopping' mechanism \Rightarrow of $X_{
 m max}$
- expected/desirable input from LHC:
 - measurements of total & diffractive cross sections by TOTEM \Rightarrow reliable understanding of RMS($X_{\rm max}$)
 - ullet studies of 'baryon stopping' by LHCf \Rightarrow understanding of $X_{
 m max}$
 - just an unrealistic dream: pion-proton collisions at LHC?

Backup

UHECR composition from $RMS(X_{max})$?

- $RMS(X_{max})$ for proton-induced showers
 - mainly dominated by m.f.p. $\lambda_p \propto 1/\sigma_{p-{
 m air}}^{
 m inel}$
 - also sensitive to the collision geometry: large 'stopping power' $(K_{\rm inel})$ for small b, small $K_{\rm inel}$ for large b

UHECR composition from $RMS(X_{max})$?

- $RMS(X_{max})$ for proton-induced showers
 - mainly dominated by m.f.p. $\lambda_p \propto 1/\sigma_{p-{
 m air}}^{
 m inel}$
 - also sensitive to the collision geometry: large 'stopping power' $(K_{\rm inel})$ for small b, small $K_{\rm inel}$ for large b

UHECR composition from $RMS(X_{max})$?

- $RMS(X_{max})$ for proton-induced showers
 - mainly dominated by m.f.p. $\lambda_p \propto 1/\sigma_{p-{
 m air}}^{
 m inel}$
 - also sensitive to the collision geometry: large 'stopping power' (K_{inel}) for small b, small K_{inel} for large b

- $RMS(X_{max})$ for proton-induced showers
 - mainly dominated by m.f.p. $\lambda_p \propto 1/\sigma_{p-{
 m air}}^{
 m inel}$
 - also sensitive to the collision geometry: large 'stopping power' $(K_{\rm inel})$ for small b, small $K_{\rm inel}$ for large b
- RMS(X_{max}) for nucleus-induced showers
 - mainly dominated by the collision geometry: (more 'participants' for central collisions)
 - sensitive to nuclear fragmentation (up to factor of 2 difference for RMS($X_{\rm max}$) [Kalmykov & SO, Phys. At. Nucl. 56 (1993)]
 - NB: superposition model inapplicable

- RMS(X_{max}) for proton-induced showers
 - mainly dominated by m.f.p. $\lambda_p \propto 1/\sigma_{p-{
 m air}}^{
 m inel}$
 - also sensitive to the collision geometry: large 'stopping power' $(K_{\rm inel})$ for small b, small $K_{\rm inel}$ for large b
- RMS(X_{max}) for nucleus-induced showers
 - mainly dominated by the collision geometry: (more 'participants' for central collisions)
 - sensitive to nuclear fragmentation (up to factor of 2 difference for RMS($X_{\rm max}$) [Kalmykov & SO, Phys. At. Nucl. 56 (1993)]
 - NB: superposition model inapplicable

- $RMS(X_{max})$ for proton-induced showers
 - mainly dominated by m.f.p. $\lambda_p \propto 1/\sigma_{p-{
 m air}}^{
 m inel}$
 - also sensitive to the collision geometry: large 'stopping power' $(K_{\rm inel})$ for small b, small $K_{\rm inel}$ for large b
- RMS(X_{max}) for nucleus-induced showers
 - mainly dominated by the collision geometry: (more 'participants' for central collisions)
 - sensitive to nuclear fragmentation (up to factor of 2 difference for RMS($X_{\rm max}$) [Kalmykov & SO, Phys. At. Nucl. 56 (1993)]
 - NB: superposition model inapplicable

- $RMS(X_{max})$ for proton-induced showers
 - mainly dominated by m.f.p. $\lambda_p \propto 1/\sigma_{p-{
 m air}}^{
 m inel}$
 - also sensitive to the collision geometry: large 'stopping power' $(K_{\rm inel})$ for small b, small $K_{\rm inel}$ for large b
- RMS(X_{max}) for nucleus-induced showers
 - mainly dominated by the collision geometry: (more 'participants' for central collisions)
 - sensitive to nuclear fragmentation (up to factor of 2 difference for RMS($X_{\rm max}$) [Kalmykov & SO, Phys. At. Nucl. 56 (1993)]
 - NB: superposition model inapplicable

- soft processes $(q^2 < Q_0^2)$: 'soft Pomeron'
- hard processes $(q^2 > Q_0^2)$: DGLAP formalism
- taken together: 'semihard Pomeron'

- soft processes $(q^2 < Q_0^2)$: 'soft Pomeron'
- hard processes $(q^2 > Q_0^2)$: DGLAP formalism
- taken together: 'semihard Pomeron'

- soft processes $(q^2 < Q_0^2)$: 'soft Pomeron'
- hard processes $(q^2 > Q_0^2)$: DGLAP formalism
- taken together: 'semihard Pomeron'

- soft processes $(q^2 < Q_0^2)$: 'soft Pomeron'
- hard processes $(q^2 > Q_0^2)$: DGLAP formalism
- taken together: 'semihard Pomeron'

- soft processes $(q^2 < Q_0^2)$: 'soft Pomeron'
- hard processes $(q^2 > Q_0^2)$: DGLAP formalism
- taken together: 'semihard Pomeron'
- nonlinear processes (parton shadowing / saturation):
 Pomeron-Pomeron interactions

- soft processes $(q^2 < Q_0^2)$: 'soft Pomeron'
- hard processes $(q^2 > Q_0^2)$: DGLAP formalism
- taken together: 'semihard Pomeron'
- nonlinear processes (parton shadowing / saturation):
 Pomeron-Pomeron interactions
 - NB: in this model saturation may be reached for soft $(q^2 < Q_0^2)$ partons only

 QGSJET-II-03: only dominant ('net-like') Pomeron-Pomeron interactions

 y_2,b_2

- QGSJET-II-03: only dominant ('net-like') Pomeron-Pomeron interactions
- QGSJET-II-04: also 'Pomeron loops' included
- small at low parton density
- suppressed at high density
- still a finite correction at large b
 ⇒ influence cross sections &
 particle production

- QGSJET-II-03: only dominant ('net-like') Pomeron-Pomeron interactions
- QGSJET-II-04: also 'Pomeron loops' included
- small at low parton density
- suppressed at high density
- still a finite correction at large b
 ⇒ influence cross sections &
 particle production

- QGSJET-II-03: only dominant ('net-like') Pomeron-Pomeron interactions
- QGSJET-II-04: also 'Pomeron loops' included
- small at low parton density
- suppressed at high density
- still a finite correction at large b
 ⇒ influence cross sections &
 particle production

- QGSJET-II-03: only dominant ('net-like') Pomeron-Pomeron interactions
- QGSJET-II-04: also 'Pomeron loops' included
- small at low parton density
- suppressed at high density
- still a finite correction at large b
 ⇒ influence cross sections &
 particle production

- QGSJET-II-03: only dominant ('net-like') Pomeron-Pomeron interactions
- QGSJET-II-04: also 'Pomeron loops' included
- small at low parton density
- suppressed at high density
- still a finite correction at large b
 ⇒ influence cross sections &
 particle production
- however: small impact on EAS characteristics if the model is calibrated to the same data set [SO, 2009]

- QGSJET-II-03: only dominant ('net-like') Pomeron-Pomeron interactions
- QGSJET-II-04: also 'Pomeron loops' included
- small at low parton density
- suppressed at high density
- still a finite correction at large b
 ⇒ influence cross sections &
 particle production
- however: small impact on EAS characteristics if the model is calibrated to the same data set [SO, 2009]

UHECR composition?

 PAO data on RMS(X_{max}): heavy-dominated composition at 1 EeV!

UHECR composition?

- PAO data on RMS(X_{max}): heavy-dominated composition at 1 EeV!
 - indeed, consider 2 cases for 2-component composition): change from pure p to Fe at $E_0=1\div 30$ EeV, or from a mixture (60% Fe and 40% p at 1 Eev)

UHECR composition?

- PAO data on RMS(X_{max}): heavy-dominated composition at 1 EeV!
 - indeed, consider 2 cases for 2-component composition): change from pure p to Fe at $E_0=1\div 30$ EeV, or from a mixture (60% Fe and 40% p at 1 Eev)
- 2nd option supported by the data