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flux×E2.5:
’leg’-like shape

’knee’ around
3×1015 eV
(effect of galactic
acceleration /
propagation)

’ankle’ at
few×1018 eV
(galactic /
extragalactic
transition?)

cutoff at ∼ 1020 eV
(interaction with
background γs?)
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Ultra-High Energy Cosmic Rays (UHECR)

nearest to us AGN – Centaurus A:

additional constaints
– from energy losses
in the source

⇒ UHECR sources –
most likely
extragalactic

favorable option –
Active Galactic
Nuclei (AGN)

CR acceleration
possible near the
black hole or in a
jet/lobe
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AGNs already established as UHECR sources?

Telescope Array Collaboration: 8 events out of 20 correlate with
AGNs [Sagawa, talk at TeVPA-2011]

⇒ consistent both with the isotropy and with the AGN
correlation hypothesis
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why restrict oneself with nearby sources?

the Universe is filled with 2.7K cosmological background
radiation (CMB)

⇒ UHE protons quickly loose energy on CMB
[Greisen, PRL 16 (1966); Zatsepin & Kuzmin, JETP Lett. 4
(1966)]

p+γCMB →
{

p+π0

n+π+

⇒ beyond ∼ 100 Mpc the Universe is opaque for UHECR

for a uniform distribution of extragalactic CR sources results
in a spectral cutoff at E∼ 5×1019 eV (GZK-cutoff)

in turn, UHE nuclei loose energy via photodisintegration on IR
photons: A+γ→ (A−1)+p/n ⇒ similar cutoff
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Now: UHECR cutoff – observed by 3 independent collaborations

trans-GZK story - finally over

HiRes Collaboration
[PRL 100 (2008)]:
GZK-cutoff observed
with 5σ significance

Pierre Auger Collab.
[PRL 101 (2008)]:
cutoff observed with
6σ significance

Telescope Array Collab.
[Stokes, ICRC-2011]:
cutoff observed with
3.9σ significance



UHECR cutoff: GZK or not?

UHECR also loose energy via e+e−-pair production on CMB:

p+γ→ p+e+ +e−



UHECR cutoff: GZK or not?

UHECR also loose energy via e+e−-pair production on CMB:

p+γ→ p+e+ +e−

if UHECR are protons: spectral ’dip’ will be produced



UHECR cutoff: GZK or not?

UHECR also loose energy via e+e−-pair production on CMB:

p+γ→ p+e+ +e−

if UHECR are protons: spectral ’dip’ will be produced

’dip’ model for galactic-extragalactic transition
[Berezinsky & Grigor’eva, A&A 199 (1988)]

transition takes place well before the ’ankle’

observed CR ’ankle’ ≡ pair production ’dip’

energy-relation between GZK cutoff and the ’ankle’ (=’dip’)
– well reproduced



UHECR cutoff: GZK or not?

UHECR also loose energy via e+e−-pair production on CMB:

p+γ→ p+e+ +e−

if UHECR are protons: spectral ’dip’ will be produced

’dip’ model for galactic-extragalactic transition
[Berezinsky & Grigor’eva, A&A 199 (1988)]

transition takes place well before the ’ankle’

observed CR ’ankle’ ≡ pair production ’dip’

energy-relation between GZK cutoff and the ’ankle’ (=’dip’)
– well reproduced



UHECR cutoff: GZK or not?

UHECR also loose energy via e+e−-pair production on CMB:

p+γ→ p+e+ +e−

if UHECR are protons: spectral ’dip’ will be produced

’dip’ model for galactic-extragalactic transition
[Berezinsky & Grigor’eva, A&A 199 (1988)]

transition takes place well before the ’ankle’

observed CR ’ankle’ ≡ pair production ’dip’

energy-relation between GZK cutoff and the ’ankle’ (=’dip’)
– well reproduced



UHECR cutoff: GZK or not?

UHECR also loose energy via e+e−-pair production on CMB:

p+γ→ p+e+ +e−

if UHECR are protons: spectral ’dip’ will be produced

’dip’ model for galactic-extragalactic transition
[Berezinsky & Grigor’eva, A&A 199 (1988)]

transition takes place well before the ’ankle’

observed CR ’ankle’ ≡ pair production ’dip’

energy-relation between GZK cutoff and the ’ankle’ (=’dip’)
– well reproduced



UHECR cutoff: GZK or not?

UHECR also loose energy via e+e−-pair production on CMB:

p+γ→ p+e+ +e−

if UHECR are protons: spectral ’dip’ will be produced

’dip’ model for galactic-extragalactic transition
[Berezinsky & Grigor’eva, A&A 199 (1988)]

transition takes place well before the ’ankle’

observed CR ’ankle’ ≡ pair production ’dip’

energy-relation between GZK cutoff and the ’ankle’ (=’dip’)
– well reproduced

if UHECR = Fe: no pronounced ’dip’

⇒ galactic-extragalactic transition – at the ’ankle’



UHECR cutoff: GZK or not?

UHECR also loose energy via e+e−-pair production on CMB:

p+γ→ p+e+ +e−

if UHECR are protons: spectral ’dip’ will be produced

’dip’ model for galactic-extragalactic transition
[Berezinsky & Grigor’eva, A&A 199 (1988)]

transition takes place well before the ’ankle’

observed CR ’ankle’ ≡ pair production ’dip’

energy-relation between GZK cutoff and the ’ankle’ (=’dip’)
– well reproduced

if UHECR = Fe: no pronounced ’dip’

⇒ galactic-extragalactic transition – at the ’ankle’



UHECR cutoff: GZK or not?

UHECR also loose energy via e+e−-pair production on CMB:

p+γ→ p+e+ +e−

if UHECR are protons: spectral ’dip’ will be produced

’dip’ model for galactic-extragalactic transition
[Berezinsky & Grigor’eva, A&A 199 (1988)]

transition takes place well before the ’ankle’

observed CR ’ankle’ ≡ pair production ’dip’

energy-relation between GZK cutoff and the ’ankle’ (=’dip’)
– well reproduced

if UHECR = Fe: no pronounced ’dip’

⇒ galactic-extragalactic transition – at the ’ankle’

⇒ measurements of CR composition – key to the UHECR puzzle
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Extensive air shower development

CR composition studies with fluorescence detectors (FD)

most sensitive to primary particle interactions (via Xmax)

⇒ suffer from uncertainties of σinel
p−air

∣

∣

∣

E0

, K inel
p−air

∣

∣

∣

E0

seeing it optimistic: probe proton-air (nucleus-air) interactions
at maximal energies (up to ∼ 1021 eV)

CR composition studies with ground-based detectors (SD)

most sensitive to interactions of secondary pions (also kaons
& (anti-)nucleons) at intermediate energies (E∼

√
E0)
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Nucleus-induced air showers & superposition model

For average (only!) air shower characteristics: A−induced EAS of
energy E – equivalent to A proton-induced showers of energy E/A

N of ’wounded’ nucleons per collision: 〈νA〉 = Aσinel
p−air/σinel

A−air
(valid up to target diffraction)

nuclear m.f.p. is σinel
p−air/σinel

A−air shorter

however, each nucleon interacts with probability: wint =
σinel

p−air

σinel
A−air

⇒ 〈XA
max(E)〉 ≃ 〈Xp

max(E/A)〉; 〈NA
e/µ(E)〉 ≃ A · 〈Np

e/µ(E/A)〉

〈Xp
max(E)〉 ≃ const+ERlnE, ER≡ d〈Xp

max(E)〉/dE;
〈Np

e/µ(E/A)〉 ∝ Eαe/µ, αe ≃ 1.1, αµ ≃ 0.9

⇒ 〈XA
max(E)〉 ≃ 〈Xp

max(E)〉−ERlnA
〈NA

e (E)〉 ≃ 〈Np
e(E)〉A0.1; 〈NA

µ (E)〉 ≃ 〈Np
µ(E)〉A−0.1

– nucleus-induced air showers reach their maxima earlier,
have more e± and less muons
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CR composition at the ’knee’

CR spectra for individual
mass groups obtained by
the KASCADE Collab.
[Astrop. Phys. 24(2005)]

partial ’knees’ seen for
light elements

’knee’ positions seem
rigidity-dependent

situation with heavier
CRs – unclear
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CR composition at the ’knee’

2nd ’knee’ observed
recently at 1017 eV
by KASCADE-Grande
[PRL (2011) in press]

caused by a spectral
break for heavy CRs (Fe)

astrophysical
(rigidity-dependent)
origin of the CR ’knee’
finally confirmed
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UHECR composition from Xmax observations

EAS maximum position Xmax – the key to the UHECR composition

spectatular results from
HiRes Collab. [PRL (2005);
PRL (2010)]: p-dominated
composition above 1018 eV

supported by data of
Telescope Array Collab.
[Tameda, ICRC-2011]
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UHECR composition from Xmax observations

EAS maximum position Xmax – the key to the UHECR composition

Pierre Auger Collab.:
change from light to heavy
CRs above 1019 eV
[PRL (2010); Facal San
Luis, ICRC-2011]

interpretation of data –
strongly model-dependent!

is it possible to reduce
model-dependence?!

yes, by studying shower fluctuations, e.g. RMS(Xmax)
[Aloisio, Berezinsky, Blasi & SO, PRD 77 (2008)]
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RMS(Xmax) measured by
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Luis, ICRC-2011]

model-dependence strongly
reduced
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UHECR composition from muon component?

Alternative approach – study of muon densities at ground

Pierre Auger Collab.: strong muon excess observed compared
to model predictions! [Rodriguez, ICRC-2011]

may be UHECR are gold nuclei?!

highly unlikely, rather CR interaction models should be wrong
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CR interaction models

similar physics content for all MC generators used in CR field:

multiple scattering

soft & hard processes

nonlinear effects, e.g. parton shadowing (not in all models)

representative models:

QGSJET (Kalmykov & SO, 1993–1997)

SIBYLL 1.7/2.1 (Ahn, Engel, Gaisser, Lipari & Stanev,
1994/1999)

QGSJET II-03/04 (SO, 2006/2011)

EPOS (Liu, Pierog & Werner, 2006-2011)

all the models based on similar ideas / qualitative approaches

differ in implementations, theory input, etc. ⇒ in predictions

model updates / cross checks with new data - necessary



MC generators & LHC data

LHC data: Nch(s) rises quicker than predicted by most MCs
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however: none of the models describes all the observables

Effect of model retuning to LHC data?

in the following investigated using the QGSJET-II model
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changing the cutoff Q2
0 between soft & hard processes

(2.5→ 3 GeV2)

parton saturation operates over a larger kinematic space

⇒ slows down multiplicity rise
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Multiplicity: cross check with ATLAS data

dNch/dη: model-independent results from ATLAS

qualitatively the same trend

the level of (dis)agreement varies for different event selections
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Multiplicity: cross check with ATLAS data

dNch/dη: model-independent results from ATLAS:

overall multiplicity corrections at ∼ 10% level

⇒ insignificant for air shower predictions
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Multiplicity: cross check with ATLAS data

dNch/dη: model-independent results from ATLAS:

overall multiplicity corrections at ∼ 10% level

⇒ insignificant for air shower predictions
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Production of strange particles

Enhancement of strange particle production may also increase Nµ

more energy channeled into hadronic cascade

QGSJET-II-03: noticeable correction required by LHC data
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Production of strange particles

Enhancement of strange particle production may also increase Nµ

more energy channeled into hadronic cascade

QGSJET-II-03: noticeable correction required by LHC data

higher kaon yields in older models (QGSJET, SIBYLL)
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lower cross sections now
supported by LHC data

QGSJET-II-04 QGSJET-II-03 SIBYLL ATLAS

MBTSAND 54.1 62.3 68.4 51.9±5.7

MBTSOR 60.8 69.8 74.7 58.7±6.5

Table: Model predictions for “visible” cross sections (in mb) at
√

s= 7
TeV for ATLAS MB triggers: at least one charged hadron at
−3.84< η < −2.09 and/or at 2.09< η < 3.84 (MBTSAND/OR).



Inelastic cross section

Similar results by ALICE & CMS:

QGSJET-II-04 QGSJET-II-03 SIBYLL ALICE

2.76 TeV 47.4 52.5 56.2 47.2±3.3

7 TeV 55.1 63.6 69.1 54.2±3.8
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QGSJET/QGSJET-II-04:
large Xmax difference
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= +

soft Pomeron

QCD ladder

soft Pomeron

soft processes (q2 < Q2
0):

’soft Pomeron’

hard processes (q2 > Q2
0):

DGLAP formalism

taken together:
’semihard Pomeron’

nonlinear processes (parton shadowing / saturation):
Pomeron-Pomeron interactions

NB: in this model saturation may be reached for soft
(q2 < Q2

0) partons only



New version of QGSJET-II (QGSJET-II-04)
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small at low parton density

suppressed at high density

still a finite correction at large b
⇒ influence cross sections &
particle production
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however: small impact on EAS characteristics
if the model is calibrated to the same data set [SO, 2009]
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QGSJET-II-04: also ’Pomeron
loops’ included

small at low parton density

suppressed at high density

still a finite correction at large b
⇒ influence cross sections &
particle production

however: small impact on EAS characteristics
if the model is calibrated to the same data set [SO, 2009]

discussed above: impact of calibration to LHC data
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heavy-dominated
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change from pure p to Fe
at E0 = 1÷30 EeV, or
from a mixture (60% Fe
and 40% p at 1 Eev)
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PAO data on RMS(Xmax):
heavy-dominated
composition at 1 EeV!

indeed, consider 2 cases for
2-component composition):
change from pure p to Fe
at E0 = 1÷30 EeV, or
from a mixture (60% Fe
and 40% p at 1 Eev)

2nd option supported by
the data


