Forward hadron productions at high energy colliders in CGC framework

H. Fujii¹, K. Itakura², Y. Nara³

(¹U Tokyo, ²KEK, ³Akita Int'I U)

27-Sep-2011, ISMD2011, Miyajima island, Hiroshima

- rcBK eqn
- OHJ
- MC

small x

Motivation

• Collider energies $\sqrt{s} \gg k_{\perp}$ in forward region y > 0, - kinematic regime of $x_{\perp} = \frac{|k_{\perp}|e^{-y_k} + |q_{\perp}|e^{-y_q}}{|k_{\perp}|e^{-y_k} + |q_{\perp}|e^{-y_q}} \ll 1$

- many gluons emerge due to BFKL cascade
- atomic number A > 1 enhances the gluon density

small x

Motivation

• Collider energies $\sqrt{s} \gg k_{\perp}$ in forward region y > 0,

- many gluons emerge due to BFKL cascade
- atomic number A > 1 enhances the gluon density
- system becomes nonlinear, leading to a universal state: Color Glass Condensate (CGC) with $Q_s^2(x) \quad (\gg \Lambda_{\rm OCD}^2)$
- universal in any high-energy processes such as cosmic ray

HF. K. Itakura, Y. Nara

Forward hadron productions in CGC framework

Aim

- To describe high-energy particle productions by incorporating the universal CGC aspects
- This is a status report of our group

Small-*x* evolution: running coupling BK

Kovchegov-Weigert, Balitsky

rcBK eqn in Balitsky's prescription:

$$\frac{\partial \mathcal{N}(r,y)}{\partial y} = \int d^2 \boldsymbol{r}_1 \ \boldsymbol{K}^{\text{run}} \left[\ \mathcal{N}(r_1,y) + \mathcal{N}(r_2,y) - \mathcal{N}(r,y) - \mathcal{N}(r_1,y) \mathcal{N}(r_2,y) \right]$$

- needs an initial condition at $x = x_0$
- describes BFKL cascade (growing) and non-linear effects (saturation)
- running coupling effects leads to $Q_s^2 \propto (x_0/x)^{0.3} = e^{0.3y}$ Albacete
 - ⇒ practical tool to phenomenology (Cf. geometric scaling at HERA)

DIS: AAMQS

DIS cross section

$$\sigma_{T,L}(x,Q^2) = \sigma_0 \int dz d^2 r |\Psi_{T,L}(z,Q^2,r)|^2 \mathcal{N}(r,x)$$

- successful description for the compiled HERA data
- stringent constraint on fixing $\mathcal{N}(r,x)$ for the proton
- $\mathcal{N}(r, x)$ can be used in other processes

Albacete et al.(2010)

HF, K. Itakura, Y. Nara

Forward hadron productions in CGC framework

rcBK as a tool for QCD phenomenology

Eqn.	DGLAP	(rc)BK
(u)pdf	f(Q, x)	$\mathcal{N}(k,x)$
global fit	CTEQ,	AAMQS
evolution in	Q^2	x
initial cond	some model	MV^γ , rc MV ,
system becomes	more dilute	more dense/non-linear
		scale $Q^2_s(x)$
produced hadron	k_{\perp}^2	x_F

HF, K. Itakura, Y. Nara Forward hadron productions in CGC framework

rcBK eqn DHJ MC

Forward particle production

"Large-x – small-x" reactions:

Dumitru-Hayashigaki-Jalilian-Marian (DHJ)

DHJ factorization form

$$\frac{dN}{dy_h d^2 p_T} = \frac{K}{(2\pi)^2} \sum_{ijk} \int_{x_F}^1 \frac{dz}{z^2} x_1 f_{i/p}(x_1, p_T^2) \, \widetilde{\mathcal{N}}_j(\frac{p_T}{z}, x_2) \, D_{h/k}(z, p_T^2) \; ,$$

- $f_{i/p}$ for large-x partons (CTEQ6 NLO)
- $D_{h/k}$ high- p_T fragmentation (DSS NLO)
- \mathcal{N}_i for small-x gluons in the proton (rcBK) \rightarrow nuclear target?

rcBK eqn DHJ MC

Nuclear target

MC modeling for a nucleus:

• The simplest will be a homogeneous disk no impact parameter dependence an additional parameter Q_{s0A}^2 needed

Nuclear target

MC modeling for a nucleus:

• The simplest will be a homogeneous disk no impact parameter dependence an additional parameter Q_{s0A}^2 needed

• Random nucleons w/ Woods-Saxon dist. fluctuating density \Rightarrow b-dependence $Q_{s0A}^2 = Q_{s0p}^2 \times N$ w/o additional parameter Drescher-Nara

Single particle spectra in dA at RHIC

homogeneous nucleus with an effective scale $Q^2_{sA}~({\rm DHJ/rcBK})$ Albacete-Marquet

reproduce the data nicely

Single particle spectra in dA at RHIC

MC modeling (MC-DHJ/rcBK)

HF-Itakura-Kitadono-Nara

- reproduce the data nicely
- AAMQS set h and rcMV for $\mathcal{N}(r,y)$
- Q_{s0A}^2 fixed by MC; no additional parameter besides K

Attempt: pp at $\sqrt{s} = 200$ GeV

- set h works reasonably even for proton at $\sqrt{s} = 200 \text{ GeV}$
- rcMV is a model which is not yet tuned to DIS

HF, K. Itakura, Y. Nara Forward hadron productions in CGC framework

Test calculation for forward physics at LHC

• Hadron productions $(\pi^0, K^0 \text{ and } n)$ at $\eta = 8.5$ at 7 TeV (LHCf) is being studied in this framework

Summary

• The rcBK eqn is a QCD-based practical tool for phenomenology

global fit of compiled DIS data gives a stringent constraint

- We optimized our description for p(d)A, combining the state-of-the-art pdf's for large-*x* and small-*x* partons, and the MC modeling for the nucleus: MC-DHJ/rc-BK
- MC-DHJ/rcBK fits the forward data very nicely

Summary

• The rcBK eqn is a QCD-based practical tool for phenomenology

global fit of compiled DIS data gives a stringent constraint

- We optimized our description for p(d)A, combining the state-of-the-art pdf's for large-*x* and small-*x* partons, and the MC modeling for the nucleus: MC-DHJ/rc-BK
- MC-DHJ/rcBK fits the forward data very nicely
- Outlook for MC-DHJ/rcBK:
 - More systematic analyses: R_{cp} , two-particle correlations,

Albacete-Marquet

- Applications to forward physics at LHC and in cosmic ray Cf. for LHC Albacete-Dumitru
- more complete NLO extension...

back-up

Framework II: hadronic collisions

k_t factorization form

$$\frac{d\sigma^{A+B\to g}}{dyd^2p_Td^2X} \sim K \frac{\alpha_s}{p_T^2} \phi(k_1, x_1, b) \otimes \phi(k_2, x_2, X - b)$$

- is proved for pp, pA at LO, but is a working assumption for AA BGV
- $\phi(k,x) \propto k^2$ F.T. $\mathcal{N}_G(\boldsymbol{r},x)$ is the unintegrated gluon dist in the hadron.
- $\mathcal{N}_G = 2\mathcal{N} \mathcal{N}^2$, with \mathcal{N} constrained by DIS
- $\bullet \ \mathcal{N}$ in a nucleus requires a modeling for a nucleus

HF, K. Itakura, Y. Nara Forward hadron productions in CGC framework

MC-KT model

Albacete-Dumitru

 MC-KT/rcBK = k_T factorization formalism with φ obtained from rcBK evolution locally on transverse plane of a Monte-Carlo-generated nucleus
applied at LHC

Initial condition for rcBK

• Adopted I.C. at $x_0 = 0.01$:

N.B.: for a larger $\gamma \mathcal{N}(k)$ has negative values.

Initial condition for rcBK

• Adopted I.C. at $x_0 = 0.01$:

N.B.: for a larger $\gamma \mathcal{N}(k)$ has negative values.

• Another possible I.C.: running coupling (rc) MV

$$\mathcal{N}(r, x_0) = \frac{\alpha_s(\mu)}{\alpha_s(r)} \left(1 - \exp\left[-\frac{r^2 Q_A^2}{4}\right]\right) \sum_{\Xi}$$

N.B. Q_A^2 is not tuned, but fixed $Q_s^2 = Q_A^2 \ln(Q_s^2/\Lambda^2)$

IIT

