

Measurements of Hadron Production and Correlations at CMS

Romain Rougny (On Behalf of the CMS Collaboration)

ISMD 2011

Miyajima-island, Japan / 26-30 September 2011

Outline

The CMS detector

The theoretical framework of soft QCD

Results:

- Single charged particle Spectra: $dn/d\eta \ \ \, (\text{NSD} \, , \, \text{with 1 central track, MBUEWG}) \\ dn/dpt$
- Multiplicities
- Strange particle production

Rivet

Analysis Summary

Conclusions

The CMS Detector

Soft Interactions and Underlying Event

The majority of the pp collisions are soft

- → no "perturbative" predictions
- → need to model them phenomenologically

==> Use Monte-Carlo (MC) description to correct data:

- PS, UE and hadronization models tuned on previous (low energy) data
- Different models available diverging at high energy prior to LHC
- → Early LHC data give us a unique chance to fill gaps in our knowledge on soft QCD
- → Reference for high energy pp collisions and heavy ions run

Single Charged Particle Spectra: dN/dη

JHEP 02 (2010) 041

PRL 105 (2010) 022002

Event Selection

- MinBias trigger (BSC)
- At least 3 GeV in both HF
- primary vertex
- => Corrected to non single diffraction (NSD)

Charged Particle Selection

- $-|\eta| < 2.5$
- corrected to p_T>0 GeV/c
- 3 different methods

CMS measurements in agreement with other experiments.

However densities are higher than most models and pre-LHC MC at high energy.

=> MC tuning effort on LHC data ongoing (see http://lpcc.web.cern.ch/LPCC/)

Why?

Minimize dependence on
 MC modeling of diffraction
 No correction to NSD

- Provide distributions in acceptance regions reachable by all 4 LHC experiments

==> easy cross-check of results

PYTHIA 8, and PYTHIA 6 Z2

(tuned on UE @ 7 TeV)

describe quite well 7TeV data,
but fail for 0.9 TeV.

Pre-LHC tunes can't predict
enough particles for both energies

MBUEWG

Combined results from ATLAS, ALICE & CMS thanks to the Minimum-Bias/Underlying Event Working Group

Excellent agreement from all 3 exp. at 7TeV

Pt and evolution

Overall, pre-LHC tunes predict to strong events
Theoretical predictions show as well higher <pT> than observed

Single Charged Particle Spectra: dN/dp_T

PRL 105 (2010) 022002

- Results at 7 TeV most compatible with PYTHIA 8 while PYTHIA 6 is worse
- Empirical $x_T = 2 p_T / \sqrt{s}$ unifies the differential cross sections from a wide range of collision energies onto a common curve at high x_T
 - => Interpolated (x_T and p_T scaling) data provides a reference for PbPb studies of nuclear modification factors at LHC for \sqrt{s}_{NN} =2.76 TeV

Charged Particle Multiplicities

- Large multiplicity tail observed at 7 TeV (cf. $dN/d\eta$)
- Presence of second NBD, sign of MPI?
- $\langle p_T \rangle$ vs n scales with energy
- No Monte Carlo is able to describe all multiplicities at all energies (but PYTHIA 8 better)
- Most MC/tunes can not describe simultaneously the multiplicity and the p_T dependence (again PYTHIA 8 better)

KNO / Moments

 $z = n/\langle n \rangle$

For large acceptance, KNO is violated, which is confirmed by the rise of the C-moments with energy

For central rapidity, KNO holds, and fits of moments VS energy are compatible with a constant

Strange Particle Production: K_s^0 , Λ , Ξ

CMS Paper QCD-10-007

JHEP 05 (2011) 064

Similar increase for strange as for charged particle with energy

=> PYTHIA fails again to match this increase!

Discrepancy larger for Ξ at both energy and up to factor 3 at 7 TeV.

p_ [GeV/c]

Strange Particle Production: K_s^0 , Λ , Ξ

==> Again, increase similar with energy, and pre-LHC tunes produce too few strange particles

Production ratios seem to be energy-independent

No clear sign of QGP formation

Rivet

Some analysis are ported to RIVET, which enables easy tuning/cross-check of Monte-Carlos: See http://projects.hepforge.org/rivet/

(all analysis should soon have a RIVET implementation)

For now, we have 4 analysis:

CMS 2010 S8547297 CMS 2010 S8656010 CMS 2011 S8884919 CMS 2011 S8978280

Analysis Summary

Summary page of all CMS QCD analysis:

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsQCD#Results

Plots (pdf + png), arxiv + cern preprint + paper + durham DB links

Transverse momentum and pseudorapidity distributions of charged arXiv:1002.0621 hadrons in pp collisions at sqrt(s) = 0.9 and 2.36 TeV

Transverse-momentum and pseudorapidity distributions of charged arXiv:1005.3299

hadrons in pp collisions at sqrt(s) = 7 TeV

Charged particle transverse momentum spectra in pp collisions at sqrt(s) = 0.9 and 7 TeV

arXiv:1104.3547

Charged particle multiplicities in pp interactions at sqrt(s) = 0.9, 2.36, arXiv:1011.5531

and 7.0 TeV

Pseudorapidity distributions of charged particles in pp collisions at sqrt(s) = 7 TeV with at least one central charged particle

Strange particle production in pp collisions at sqrt(s) = 0.9 and 7 TeV arXiv:1102.4282

Underlying events CHAO, Yuan (Monday)

Bose-Einstein correlations PADULA, Sandra (Wednesday)

2-particle correlations / Ridge KIM, Ji Hyun (Wednesday)

CONCLUSIONS

- Understanding of soft QCD contributions is crucial for new physics searches and precision measurements of Standard Model processes
- Pre-LHC Monte Carlo tunes do not describe the data well in all aspects
 - → Monte Carlo tuning effort ongoing
- Strangeness production has been investigated showing similar discrepancy
- Common efforts between the LHC experiments to provide well-defined plots is starting to show results
- RIVET implementations of all analysis to help tunning MC

ARIGATO!