Nuclear geometry and number of collisions: Glauber model and beyond

Trina Potashnikova

Boris Kopeliovich

Valparaiso, Chile

宮島

Sept. 26 - 30, 2011

Normalization of hard processes

The measured pA to pp ratio of the numbers of events is to be normalized in order to get the ratio of hard cross sections

$$\begin{split} \mathbf{R}_{\mathbf{A}/\mathbf{N}}^{\mathbf{hard}}(\mathbf{b}) &\equiv \frac{d\sigma_{\mathbf{hard}}^{\mathbf{hA}}/d^{2}\mathbf{b}}{\mathbf{T}_{\mathbf{A}}(\mathbf{b})\,\sigma_{\mathbf{hard}}^{\mathbf{hN}}} = \frac{\mathbf{N}_{\mathbf{hard}}^{\mathbf{hA}}(\mathbf{b})}{\mathbf{n}_{\mathbf{coll}}(\mathbf{b})\,\mathbf{N}} \\ \mathbf{n}_{\mathbf{coll}}(\mathbf{b}) &= \frac{\sigma_{\mathbf{in}}^{\mathbf{hN}}\,\mathbf{T}_{\mathbf{A}}(\mathbf{b})}{\mathbf{P}_{\mathbf{in}}(\mathbf{b})}; \quad \mathbf{P}_{\mathbf{in}}^{\mathbf{Gl}}(\mathbf{b}) \equiv \frac{d\sigma_{\mathbf{in}}^{\mathbf{hA}}}{d^{2}\mathbf{b}} = 1 \end{split}$$

Nuclear effects in hard pA collisions usually are rather small ~10%, so the Glauber model for $n_{coll}(b)$ might be not sufficiently accurate.

Gribov inelastic shadowing makes the nucleus more transparent

 \mathbf{D} $\mathbf{n}_{coll}(\mathbf{b})$ should be redefined, if diffraction escapes detection

Gríbov ínelastic corrections

The Glauber model is a single-channel approximation. A multi-channel problem includes the off-diagonal diffractive transitions - Gribov inelastic corrections. Only the lowest order correction is known.

$$\int_{-\infty}^{\infty} d\mathbf{z_1} \rho_{\mathbf{A}}(\mathbf{b}, \mathbf{z_1}) \int_{\mathbf{z_1}}^{\infty} d\mathbf{z_2} \rho_{\mathbf{A}}(\mathbf{b}, \mathbf{z_1}) e^{i\mathbf{q_L}(\mathbf{z_2} - \mathbf{z_1})}$$

At high energies one can sum up the inelastic corrections in all orders switching to the eigenstates of interaction.

$$\mathbf{d^2b} \left[e^{-\frac{1}{2} \langle \sigma_i \rangle \mathbf{T_A}(\mathbf{b})} - \left\langle e^{-\frac{1}{2} \sigma_i \mathbf{T_A}(\mathbf{b})} \right\rangle \right]$$

Glauber single-channel model: $n_{coll}^{Gl}(b) = \frac{\sigma_{in}^{hN}T_A(b)}{P_{in}^{Gl}(b)}$

$$\mathbf{P_{in}^{Gl}(b)} = \frac{\mathbf{d}\sigma_{tot}^{hA}}{\mathbf{d}^{2}\mathbf{b}} - \frac{\mathbf{d}\sigma_{el}^{hA}}{\mathbf{d}^{2}\mathbf{b}} - \frac{\mathbf{d}\sigma_{el}^{hA}}{\mathbf{d}^{2}\mathbf$$

If diffractive excitation of the proton and/or the nucleus escape detection, their cross sections should be subtracted as well. However, diffraction cannot be treated self-consistently within the Glauber model.

Gribov multi-channel approach: n_c^G

 $\mathbf{P_{in}^{Gr}(b)} = \frac{\mathbf{d}\sigma_{tot}^{hA}}{\mathbf{d}^{2}\mathbf{b}} - \frac{\mathbf{d}\sigma_{el}^{hA}}{\mathbf{d}^{2}\mathbf{b}} - \frac{\mathbf{d}\sigma_{qel}^{hA}}{\mathbf{d}^{2}\mathbf{b}} - \frac{\mathbf{d}\sigma_{$

All these cross sections haven't been measured, can be only calculated.

 $\frac{\mathbf{hA}}{\mathbf{2h}} = \mathbf{1} - \mathbf{e}^{-\sigma_{in}^{hN}} \mathbf{T}_{A}^{h}(\mathbf{b})$

$\mathbf{\hat{f}_{oll}^r}(\mathbf{b}) =$	$(\sigma_{\mathbf{in}}^{\mathbf{hN}}$	$- \sigma^{\mathbf{hN}}_{\mathbf{diff}}) \mathbf{T}_{\mathbf{A}}(\mathbf{b})$
		$\mathbf{P_{in}^{Gr}(b)}$

A iff	$\mathbf{d}\sigma_{\mathbf{qsd}}^{\mathbf{hA}}$	$\mathbf{d}\sigma^{\mathbf{h}\mathbf{A}}_{\mathbf{tsd}}$	$\mathbf{d}\sigma_{\mathbf{dd}}^{\mathbf{hA}}$
b	d ² b	d ² b	d ² b

Eigenstates - color dipoles

At high energies color dipoles are the eigenstates of interactions: $\hat{\mathbf{f}} |\mathbf{r_T}\rangle = \mathbf{f_{dip}}(\mathbf{r_T}) |\mathbf{r_T}\rangle$

$$\frac{1}{2} \frac{d\sigma_{tot}^{hA}}{d^2b} = 1 - \left\langle e^{-\frac{1}{2}\sigma_{dip}T_A^h(b)} \right\rangle$$

$$\frac{\mathbf{d}(\sigma_{\mathbf{el}}^{\mathbf{hA}} + \sigma_{\mathbf{diff}}^{\mathbf{hA}})}{\mathbf{d}^{2}\mathbf{b}} = \frac{\mathbf{d}\sigma_{\mathbf{tot}}^{\mathbf{hA}}}{\mathbf{d}^{2}\mathbf{b}} - \mathbf{1} + \left\langle \mathbf{e}^{-\sigma_{\mathbf{dip}}} \right.$$

$$\frac{\mathbf{d}(\sigma_{\mathbf{qel}}^{\mathbf{hA}} + \sigma_{\mathbf{qsd}}^{\mathbf{hA}})}{\mathbf{d}^{2}\mathbf{b}} = \left\langle \mathbf{e}^{-\sigma_{\mathbf{dip}}}\mathbf{T}_{\mathbf{A}}^{\mathbf{h}}(\mathbf{b}) \left[\mathbf{e}^{\frac{\sigma_{\mathbf{dip}}^{2}\mathbf{T}_{\mathbf{A}}^{\mathbf{h}}}{\mathbf{16}\pi^{2}}} \right] \right\rangle$$

L. Lapidus, A. Zamolodchikov, B.K. JETP Lett 33(1981)595

B.K. PRC 68(2003)044906

I. Schmidt, B.K. & I.P. PRC 73(2006)034901

M. Avioli, C. Ciofi degli Atti, I. Schmidt, B.K. & I.P. PRC 81(2010)025204

Gribov corrected cross sections

The cross sections in mb at $\sqrt{s}=200\,GeV$

Model	σ^{pPb}_{tot}	σ^{pPb}_{el}	$\left[\sigma_{sd}^{pPb}\right]_{I\!\!PI\!\!PI\!\!R}$	$\left[\sigma_{sd}^{pPb}\right]_{3I\!\!P}$	σ^{pPb}_{qel}	σ^{pPb}_{qsd}	σ^{pPb}_{tsd}	σ^{pPb}_{dd}
Glauber	3616.8	1446.8	-	5.1	98.6	-	42.3	-
q-2q	3457.5	1313.8	33.3	7.6	96.2	3.1	41.4	3.1
3q	3514.1	1362.3	8.9	6.3	98.9	0.6	42.53	0.6

 $\sqrt{\mathrm{s}} = 5.5\,\mathrm{TeV}$

Model	σ^{pPb}_{tot}	σ^{pPb}_{el}	$\left[\sigma_{sd}^{pPb}\right]_{I\!\!PI\!\!PI\!\!R}$	$\left[\sigma_{sd}^{pPb}\right]_{3I\!\!P}$	σ^{pPb}_{qel}	σ^{pPb}_{qsd}	σ^{pPb}_{tsd}	σ^{pPb}_{dd}
Glauber	4241.5	1794.9	_	28.8	141.43	-	22.9	-
q-2q	4194.2	1755.6	5.8	33.4	141.8	0.0	23.0	0.0
3q	4207.1	1767.3	0.9	31.2	142.5	0.0	23.1	0.0

Gribov corrections make the nucleus more transparent, i.e. N_{coll} increases by about 10%, nearly eliminating the Cronin enhancement

Short range NN correlations

Inclusion of SRC leads to an effective modification of the nuclear profile $\mathbf{T}^{\mathbf{h}}_{\mathbf{A}}(\mathbf{b}) \Rightarrow \widetilde{\mathbf{T}}^{\mathbf{h}}_{\mathbf{A}}(\mathbf{b}) = \mathbf{T}^{\mathbf{h}}_{\mathbf{A}}(\mathbf{b}) - \mathbf{\Delta}\mathbf{T}^{\mathbf{h}}_{\mathbf{A}}(\mathbf{b})$ $\Delta T^{h}_{A}(b) = \frac{1}{\sigma_{\text{tot}}^{hN}} \int d^{2}l_{1} d^{2}l_{2} \frac{\Delta^{\perp}_{A}(l_{1}, l_{2})}{\Delta^{\perp}_{A}(l_{1}, l_{2})} \operatorname{Re} \Gamma^{pN}(b - l_{1}) \operatorname{Re} \Gamma^{pN}(b - l_{2}),$ $\Delta_A^{\perp}(l_1,l_2) = A^2 \int dz_1 \int$ $\Delta_{\mathbf{A}}(\mathbf{r_1},\mathbf{r_2}) = \rho_{\mathbf{A}}^{(2)}(\mathbf{r_1},\mathbf{r_2})$

The usual single-nucleon density: $ho_{\mathbf{A}}(\mathbf{r})$ The 2-body density matrix: $\rho_A^{(2)}(\mathbf{r_1},\mathbf{r_2})$

$$dz_2 \, \Delta_{\mathbf{A}}(\mathbf{r_1},\mathbf{r_2})$$

$$) - \rho_{\mathbf{A}}(\mathbf{r_1})\rho_{\mathbf{A}}(\mathbf{r_2})$$

Short range NN correlations

 $\Delta_A(r_1, r_2)$ is calculated employing a realistic phenomenological NN potential including spin $\tilde{\sigma}_{i}\cdot\tilde{\sigma}_{j}$, $ilde{ au}_{\mathbf{i}}\cdot ilde{ au}_{\mathbf{j}}$, isospin $(\tilde{\sigma}_{i} \cdot \tilde{\sigma}_{j}) (\tilde{\tau}_{i} \cdot \tilde{\tau}_{j})$ spin-isospin etc. correlations.

M. Avioli, C. Ciofi degli Atti, H. Morita, PRL 100(2008)162503

SRC/Gribov corrected Nroll

Glauber

- Hereiter						
	$\sigma_{in}^{pN} [mb]$	$\sigma_{tot}^{pA} [mb]$	$\sigma^{pA}_{el} \ [mb]$	$\sigma^{pA}_{qel} \left[mb ight]$	$\sigma_{in}^{pA} [mb]$	N_{coll}
RHIC	42.1	3297.6	1368.4	66.0	1863.2	4.70
LHC	68.3	3850.6	1664.8	121.0	2064.8	6.88

Glauber+SRC

	$\sigma_{in}^{pN} [mb]$	$\sigma_{tot}^{pA} [mb]$	$\sigma^{pA}_{el} [mb]$	$\sigma^{pA}_{qel} [mb]$	$\sigma_{in}^{pA} \left[mb ight]$	N _{coll}
RHIC	42.1	3337.6	1398.1	58.5	1881.0	4.65
LHC	68.3	3885.8	1690.5	112.6	2082.7	6.82

Glauber+SRC+Gribov

	$\sigma_{in}^{pN} \left(\sigma_{in}^{pN} - \sigma_{diff}^{pN}\right)$	σ^{pA}_{tot}	$\sigma_{el}^{pA} \; (\sigma_{el}^{pA} + \sigma_{diff}^{pA})$	$\sigma_{qel}^{pA} \; (\sigma_{qel}^{pA} + \sigma_{qsd}^{pA})$	σ^{pA}_{in}	N_{coll}
RHIC	42.1 (30.0)	3228.1	1314.0(1331.0)	72.0(74.4)	1842.1 (1823.0)	4.75(3.42)
LHC	68.3(56.3)	3833.3	1655.7 (1658.0)	113.4(111.3)	2064.2 (2064.0)	6.88(5.67)

Gribov corrections and SRC essentially compensate each other in N_{coll} Missed diffractive events significantly affect N_{coll} (in parentheses)

C. Ciofi degli Atti, C. Mezzetti, I. Schmidt, B.K. & I.P. PRC 84(2011)025205

Gribov inelastic shadowing corrections make the nucleus more transparent, increasing N_{coll} . One can sum up the Gribov corrections in all orders employing the dipole representation. For heavy nuclei N_{coll} rises by about 10%.

On the contrary, the short-range NN correlations make nuclei more opaque and reduce N_{coll} . The two effects partially compensate each other.

 \bullet N_{coll} may be strongly affected by missed diffractive events, which contribute to $\sigma_{\rm in}^{\rm hA}$ and include diffractive excitation of the beam (coherent/incoherent) of the bound nucleons, or both. This correction might be significant.

