Experimental Summary

Y. Akiba
RIKEN Nishina Center
ISMD2011@Miyajima

Hard QCD

- pQCD is now very well established
- Both theory and experiment are now very accurate, and getting more and more accurate
- New LHC data, at higher energies and with excellent detectors, ATLAS and CMS, show impressive agreements between the data and theory, from a few GeV to a few TeV
- +) Basis for search of Higgs and Beyond Standard Model
- +) Well calibrated and accurate probe of QGP
- -) No "new Physics" seen in hard QCD sector so far

Jet results from LHC

The data and theory agree very well for all distributions for wide kinematic range

W, Z and top at LHC

- Many measurements on W, Z, and top
- Agree very well with theory
- QCD effects well understood (\rightarrow top mass) $m_{\rm t} = 173.1 \pm 2.1 {
 m (stat)}^{+2.8}_{-2.5} {
 m (syst)}$ GeV.

Total cross sections * Branching fractions

$$m_{\rm t} = 173.1 \pm 2.1({\rm stat})^{+2.8}_{-2.5}({\rm syst})$$
 GeV.

Higgs: still hiding but in limited space

146-232; 256-282; 296-466 GeV excluded

145-216; 226-286; 310-400 GeV excluded

LEP exludes m<115 GeV EW fits excludes m>161 GeV

- Place for SM Higgs is now limited to 115<m<145 GeV
- Impressive success of Hard QCD & experiments
- SM Higgs can be discovered soon
- Or is it excluded soon(???)

Soft physics data at LHC

- New effects at high multiplicity events
- Basic data for UHE Cosmic rays

"Ridge" in p+p remains a mystery

- Long range η correlation in p+p
- Unlike "ridge" in A+A, it is not v3
- Could be related to flux tube(?)
- Appears Nch > 90
- Dissapears for high pT(>6 GeV/c) trigger

Forward Physics and Cosmic Rays

- LHCf measured photon production at very forward at LHC to study UHE Cosmic rays with Air shower technique
- LHC is at or beyond "Knee" of cosmic ray spectrum

Cosmic Ray spectrum

Cosmic Ray Cut-off

- p + CMB γ interaction \rightarrow cut off at 5x10²⁰ (GZK cut off)
- The cut=off at ~10²⁰ eV observed by HiRes, Pierre Auger, and Telescope Array
- But most of UHE CR appears to be Fe, not proton (puzzle)
- MC tuning with LHC data doesn't solve the puzzle so far...

QCD phase diagmam

Soft Physics results at LHC

QGP at LHC seen by soft probes

- dN/dη vs Npart is very similar to RHIC
 - Strong gluon saturation effects?
- dN/dη x2.1 of RHIC, larger than most predictions
 - But how much contribution from jets fragmentation?
- $\varepsilon \tau \sim 15 \text{ GeV/fm}^2\text{c}$ ~ 3 times of RHIC
- <pT>~30% higher than RHIC
 - stronger radial flow than RHIC
- Hadron abundance well described chemical model
- Baryon enhancement stronger than RHIC is observed
- V2(pT) is very similar to RHIC

Larger, Hotter, and longer lived QGP than RHIC is formed But QGP at LHC appears to be similar to that at RHIC No big surprise

Jet measurements at LHC

LHC jets results

Very surprising

- $R_{AA} \sim 0.5$ and independent of p_T (for $p_T > 50$ GeV)
- Large jet asymmetry A_J is seen
- → Large fluctuation of energy loss
- → Path length dependence of energy loss seems to be very steep
- Little modification of jet fragmentation
- Little modification of di-jet angular correlation
- Lost energy goes to low p_T particles at large angle (i.e. bulk matter)
- → It is as if a parton only loses its energy in QGP and the lost energy is quickly dissipated in the medium. (heat up the medium)
- → Perturbative energy loss model is severely challenged (if not completely excluded)

Jet is a very powerful, direct probe of QGP

Thermal Photon at RHIC

Excess of low pT photon
 consistent with thermal photon
 T_{init} = 300 – 600 MeV

- Large v2 of direct photon at low pT
- Challenge to the theories

Initial state fluctuation and v3

Eccentricity coefficients at RHIC

Npart

Npart

- Initial state fluctuation causes higer order eccentricity ε_n
- This is then converted to higher order harmonic flow v_n
- ε_2 : collision geometry
- ε_3 : Fluctuation

Measurements of higher harmonics v_n

v_2 and v_3 to constrain η/s

 ε_2 (Glauber) > ε_2 (MC-KLN) while ε_3 (Glauber) $\approx \varepsilon_3$ (MC-KLN)

The difference of the two model is exaggerated due to the fact that ε_2 by MC-KLN is large. For more realistic CGC, the difference could be smaller.

Beam Energy Scan and search for Critical Point

Beam Energy Scan

RAA < 1 above 39 GeV Earlier data show RAA>1 at ~20 GeV

V2(pT) saturate above 39 GeV

Onset of QGP formation between 20 and 39 GeV???

Beam Energy Scan

STAR preliminary

√s_{NN} (GeV)

10³

10²

10

Rapid change of $\varepsilon_{\rm F}$ not observed

Softest **Point** should

change in ε with

mimimum observed

energy

No

 K/π ratio shows a peak, but less sharp

No clear indication of **Critical Point**

Leap of laser intensity

20110928@ISMD2011 30

Probing Dark Energy particle in vaccuum

Scalar field production by photon-photon scattering with resonance enhancement

Building blocks

- Potential to probe new physics at very high sensitivity
- Enhancement by a factor of N_{γ}^{3}

New Accelerator technique

D. Froula et al., PRL 103, 215006 (2009)

Kameshima et al., APEX 1, 066001 (2008)

13

- Acceleration to ~1 GeV with LWFA demonstrated
- Many technical challenges for linear collider application

