

Vector Bosons from PbPb Collisions with the CMS Detector

Camelia Mironov LLR/Ecole polytechnique

On behalf of the CMS Collaboration

Outline

- © Vector bosons (γ , Z->II, W->IV) and heavy-ion physics (this talk I= μ)
- Detection and reconstruction
 - ★ the CMS at the LHC
 - **➡** Identification
 - ▶ Photons
 - **Muons**
 - ▶ Missing E_T (MET)
- Physics results (2010 PbPb data)
 - Photons
 - **→** Z
 - \rightarrow W
- Conclusions

Vector bosons and heavy-ion physics

- A vacuum-like reference (for the final state effects), produced in AA collisions
- Access to cold nuclear matter effects, without specifically running pA collisions

Vector bosons and heavy-ion physics

- The best handle/tool for jet energy calibration
 - ightharpoonup igh
 - RAA gives indirect access to the initial parton energy (basically just the leading hadrons), a convolution of many initial and final state effects (one of the reasons for huge differences between different model calculations/predictions)
- LHC
 - → Higher energies → weak bosons energetically possible 1st time in HI
 - Better (than previous HI exp) detection capabilities (coverage and technologies) to reconstruct photons and leptons

Detector: the CMS at the LHC

- Structure:
 - Tracker+calorimeters (HCAL and ECAL) inside the solenoid coil
 - Muon detectors embedded in the flux return iron yoke of the magnet
 - Large acceptance
 - 2π in azimuth
 - Si-tracker $|\eta|$ < 2.5
 - ECAL |η|<3.0, HCAL |η|<5.2
 - Muon detectors $|\eta|$ < 2.4
- High resolution
 - ▶ Granularity of the **Si-pixel layer+4T mag field** ~ $\Delta p_T/p_T$ < 1.5

Reconstruction

Photons

Many sources of high-pT photons

Reconstruction steps:

- I. ECAL clusters candidates selection
- 2. Clusters isolation
- 3. Photon signal extraction

Isolated/direct Photons

- Clusters/photon candidates identification
 - ⇒ algorithm: island clustering (Ref: CERN-LHCC-2006-001)
 - crystal size: 2.2cm x 2.2cm --> 94% of energy in 3x3 crystals

Photon candidates isolation

- To reject very energetic (and hence mostly isolated) hadrons or neutrons
 - \blacktriangleright in a cone ΔR <0.15, compare the cluster energies;
 - \blacktriangleright select those for which $E_{HCAL}/E_{ECAL} < 0.2$
- To reject indirect photons
 - \blacktriangleright in cone $\Delta R < 0.4$ (that contains signal+uncorrelated background)
 - $\Sigma(E_T^i \pi \Delta R^2 < E_T^{i,background} >) < 5GeV$, where
 - i = HCAL, ECAL, and Tracks with p_T>2GeV/c
 - $\langle E_T^{background} \rangle$: $\langle E_T \rangle$ per unit area in the η - ϕ space
 - estimated in a rectangular area, $2\Delta R$ wide in η -direction and 2π in ϕ -direction

Isolated/direct Photons

Background corrected isolation:

Isolated/Direct Photons

- Signal extraction
- statistical approach to estimate the number of photons from the remaining background (photons from high-z, isolated π^0 and η decays)
- exploit the fine granularity of the ECAL ($\Delta \phi \times \Delta \eta = 0.017 \times 0.017$):
 - → quantify the transverse shower shape in the ECAL crystals

$$\sigma_{i\eta i\eta}^{2} = \frac{\sum_{i}^{5\times5} w_{i} (\eta_{i} - \bar{\eta}_{5\times5})^{2}}{\sum_{i}^{5\times5} w_{i}}$$

$$w_i = \max(0, 4.7 + \ln(E_i/E))$$

- create the probability distribution functions for $σ_{iηiη}$ (aka <u>Templates</u>)
 - photon templates:
 - from MC, mixing PYTHIA photons in HYDJET HI event
 - background templates:
 - ▶ from Data, using the non-isolated photons

Isolated/Direct Photons

Muons

- Global muons = tracker + muon stations informations
 - need $p \gtrsim 3$ GeV to reach muon stations + 2-3 GeV to compensate for the en loss in the absorber

 Table 2: Minimum p and p_T to reach first Muon station
 - **■** ID cuts at ana level:
 - reco both inside-out and outside-in
 - \blacktriangleright #hits in the tracker, χ 2, DCA, etc

$\eta = -\ln \tan \frac{\theta}{2}$	R_T^{min}	$p_{\mathrm{T}}^{min} = 0.3BR_{T}^{min}$	$p^{min} = p_{\mathrm{T}}^{min} / \sin \theta$	
$0 \le \eta \le 1.2$	4 m	4.8 GeV/c	4.8-8.7 GeV/c	a 6 No.
$1.2 \leq \eta \leq 1.5$	3 m	3.6 GeV/c	and the same of th	e in barrel 2GeV to 3GeV
$1.5 \leq \eta \leq 2.4$	1 m	$1.2\mathrm{GeV}/c$	2.8-6.7 GeV/c	Loss on endcaps

Missing E_T (MET)

- \odot Signatures for W-> $\mu\nu$
 - ⇒ high-pT isolated muon: p_T>20GeV/c in this case
 - \Longrightarrow back-to-back in φ with $V/missing E_T$

- MET reconstruction:
 - use tracks reconstructed in tracker
 - \rightarrow pT > 2GeV/c

$$MET = -\sum \vec{p_T} \approx p_{T\nu}$$

Results

Photons: spectra

- dN/dE_T scaled by the nuclear thickness function for 3 centrality bins+minbias
- рт: [20,80]GeV/с
- 21-37% systematic uncertainties

Photons: RAA vs ET

Photon RAA for 0-10% centrality, is consistent with unity

Photons: RAA vs Npart

 \bigcirc No dependence on N_{part} , within uncertanties

Z: spectra

- 39 Zs: reconstructed with muons that: $p_T^{μ}>10$ GeV/c, $|η^μ|<2.4$
- 3 p_T and 3 rapidity bins: 16% statistical and 14% systematical uncertainties
- very small initial state effects expected theoretically
 - 10-20% shadowing, ~3%isospin effects, ~2% initial state energy loss
- $lackbox{ }$ pT spectra reproduced by pp NLO calculation scaled by a geometric factor (T_{AA}): no final state effects.

Z: 'RAA' vs N_{part}

- no centrality dependence of the yield, once the different geometry is considered
- small effects expected from theory, experimental uncertainties too big to help

W

- Analysis cuts:
 - \Rightarrow pT $^{\mu}$ > 20GeV/c, $|\eta^{\mu}|$ < 2.4
 - $|\Delta \varphi| = |\varphi^{\mu} \varphi^{MET}| > 2 \text{ rad}$
- Too look for:
 - charge asymmetries
 - $R_{\mathsf{A}\mathsf{A}}$

Conclusions

- CMS measured for the first time the Z and direct photons spectra in HI collisions.
 - on-going work for finalizing the W results
- No modification (initial or final) of the vector bosons is observed, within the uncertainties, in the kinematical regions reached with the 2010 recorded data
- Baseline comparison for _final state_ effects of charged hadrons
- More data needed for investigating/quantifying any _initial state_ effects