Bose-Einstein correlations in *pp* collisions measured at LHC with CMS

Sandra S. Padula

ISMD 2011 – Hiroshima - September 26-30

HBT - BEC basics

 Detecting two identical bosons emitted from sources 1 & 2 at A & B - Correlation Function:

CMS Detector

BEC - pp @ 0.9 & 2.36 TeV - 2009 data

• Experimentally

Sandra S. Padula

$$R^{\exp}(Q = k_1 - k_2) = \frac{S(k_1, k_2)}{\mathcal{B}(k_1, k_2)}$$
 (with BEC)
Different backgrounds

Background pair selection

- » Same event, opposite charges (😕 resonances)
- » Rotation of 1 track of the pair
- » Mixed events (😬)

- Double ratios \longrightarrow reduce bias:

Coulomb FSI Gamow factor applied to data

(no BEC)

Samo avant naire

 $egin{aligned} \Upsilon_{_{SS}}(\eta) = & rac{\eta \,/\, Q}{e^{\eta/Q} - 1} \ \eta = & 2\pi lpha_{_{em}} m_{_{\pi}} \end{aligned}$

(No BEC in MC)

 $\mathcal{R}(Q) = rac{R(Q)}{R_{_{MC}}(Q)} = rac{\left(rac{dN_{_{signal}}\,/\,dQ}{dN_{_{ref}}\,/\,dQ}
ight)}{\left(rac{dN_{_{signal}}\,/\,dQ}{dN_{_{MC}\,_{ref}}\,/\,dQ}
ight)}$

Summary of results – pp collisions @ 0.9 TeV

2010 results - pp collisions 0.9 & 7 TeV

- Reference sample: same sign tracks, mixed events, ~ multiplicity
- MC simulation: Pythia 6 Tune Z2

Dependence on k_T and N_{ch}

Sandra S. Padula

Fit parameters vs. k_T and N_{ch}

BEC in pp collisions @ LHC with CMS - ISMD 2011

8

r - dependence on N_{ch}

The dip structure in HBT - pp collisions

The dip structure step by step

Sandra S. Padula

The dip structure step by step

Sandra S. Padula

The dip structure - 1

- For $\Omega = e^{-(Qr)}$: χ^2 / N_{dof} =485/194 (0.9 TeV) & 739/194 (7 TeV)
 - Reason: anticorrelation for same sign pairs (zoomed axis)

[au- model \rightarrow Csörgő & Zimányi, N.P. A 517, 588 (1990); Metzger et al., P. L. B663, 114 (2008)]

The dip structure - 2

- » Observed in e^+e^- experiments at LEP [L3, Eur. Phys. J. C71, 1648 (2011)]
- » This is the first observation of this anticorrelation in pp collisions!

» Using Eq. (R*) to fit data: χ^2 / $N_{_{dof}}$ = 213/192 (0.9 TeV) and χ^2 / $N_{_{dof}}$ = 215/192

(2011)]

029

[JHEP05

Summary & conclusions

- Bose-Einstein Correlations → measured at CMS detector in 0.9 TeV, 2.36 TeV and 7 TeV pp collisions
- Shown: BEC data & parameter fits $\ \longrightarrow \ \Omega = e^{-(Qr)}$
 - trends seen in parameters do not depend on fit function (checked with r first moments)
- Inclusive radius parameter : $r_{7 TeV} > r_{0.9 TeV}$ - reflects increase in N_{ch} with \sqrt{s}
- Correlations as Double Ratios binned in N_{ch} & k_T
 - -r decreases with k_T for high multiplicity events N_{ch}
 - » similar behavior with k_T is seen in AA collisions (\leftrightarrow collective behavior)
 - $\, \ast \,$ in pp collisions also seen by E735 (Tevatron), STAR, PHENIX and ALICE
- Anticorrelation of like-sign pairs \rightarrow 1st observation in pp collisions by CMS
 - Better χ^2/N_{dof} -> param. describing time evolution of the source (assumes broad distr. in τ and strong $x \times p$ correlations)
 - Dip depth decreases with increasing N_{ch}

More results - pp 0.9 TeV & 2.36 TeV

Fit functions - pp sqrt{s}=0.9 & 7 TeV

- Double ratios
 - Gaussian fit
- $R(Q) = C[1+\lambda \,\, \Omega(Qr)](1+\delta Q)$ $\Omega(qr) \sim \exp[-(Qr)^2]$ bad (reduced $\chi^2 > 9)$
- Exponential fit

$$\Omega(qr)\sim \exp(-Qr)$$

\sqrt{s}	$\chi^2/N_{\rm dof}$	С	λ	$r \; ({\rm fm})$	$\delta \ (10^{-2} \ {\rm GeV}^{-1})$
$0.9~{\rm TeV}$	485/194	0.965 ± 0.001	0.616 ± 0.011	1.56 ± 0.02	2.8 ± 0.1
$7 { m TeV}$	739/194	0.971 ± 0.001	0.618 ± 0.009	1.89 ± 0.02	2.2 ± 0.1

• Levy fit

$$\Omega(qr)\sim \exp[-(Qr)^lpha]$$

\sqrt{s}	$\chi^2/N_{ m dof}$	λ	$r~({ m fm})$	α
$0.9~{\rm TeV}$	453/193	0.847 ± 0.057	2.20 ± 0.17	0.806 ± 0.033
$7 { m TeV}$	676/193	0.896 ± 0.051	2.83 ± 018	$0.792 \pm 0.0.024$

Dependence on k_T and N_{ch} - tables

• Double ratios (2010 pp data) - exponential fits

k_{T} (GeV)	$N_{\rm ch} (< N_{\rm ch} >)$	$\chi^2/N_{\rm dof}$	С	λ	r (fm)	$\delta (10^{-2} \text{GeV}^{-1})$		
$\sqrt{s} = 0.9 \text{ TeV}$								
0.10 - 0.30	2 - 9 (6.6)	220/194	0.925 ± 0.006	1.011 ± 0.051	1.211 ± 0.057	6.1 ± 0.6		
0.10 - 0.30	10 - 24 (15.5)	285/194	0.969 ± 0.002	0.761 ± 0.034	1.652 ± 0.057	2.9 ± 0.2		
0.10 - 0.30	25 - 79 (31.2)	216/194	0.984 ± 0.002	0.828 ± 0.077	2.331 ± 0.153	1.6 ± 0.2		
0.30 - 0.50	2 - 9 (6.6)	213/194	0.912 ± 0.007	0.754 ± 0.027	1.046 ± 0.049	6.0 ± 0.6		
0.30 - 0.50	10 - 24 (15.5)	247/194	0.970 ± 0.002	0.636 ± 0.023	1.643 ± 0.051	2.3 ± 0.2		
0.30 - 0.50	25 - 79 (31.2)	223/194	0.984 ± 0.002	0.549 ± 0.033	1.839 ± 0.089	1.2 ± 0.2		
0.50 - 1.00	2 - 9 (6.6)	228/194	0.911 ± 0.009	0.626 ± 0.039	1.034 ± 0.079	6.6 ± 0.8		
0.50 - 1.00	10 - 24 (15.5)	218/194	0.957 ± 0.003	0.508 ± 0.024	1.331 ± 0.059	3.4 ± 0.2		
0.50 - 1.00	25 - 79 (31.2)	211/194	0.979 ± 0.003	0.428 ± 0.029	1.456 ± 0.086	1.5 ± 0.2		
	$\sqrt{s} = 7 \text{ TeV}$							
0.10 - 0.30	2 - 9 (6.6)	216/194	0.910 ± 0.008	1.025 ± 0.057	1.144 ± 0.062	7.3 ± 0.7		
0.10 - 0.30	10 - 24 (16.4)	287/194	0.970 ± 0.002	0.865 ± 0.041	1.856 ± 0.065	2.8 ± 0.2		
0.10 - 0.30	25 - 79 (38.5)	295/194	0.984 ± 0.001	0.899 ± 0.039	2.544 ± 0.076	1.5 ± 0.1		
0.30 - 0.50	2 - 9 (6.6)	202/194	0.935 ± 0.008	0.807 ± 0.039	1.187 ± 0.066	4.1 ± 0.7		
0.30 - 0.50	10 - 24 (16.4)	288/194	0.964 ± 0.002	0.639 ± 0.023	1.606 ± 0.050	2.8 ± 0.2		
0.30 - 0.50	25 - 79 (38.5)	328/194	0.982 ± 0.001	0.592 ± 0.018	2.015 ± 0.048	1.3 ± 0.1		
0.50 - 1.00	2 - 9 (6.6)	181/194	0.883 ± 0.013	0.655 ± 0.042	0.919 ± 0.078	9.4 ± 1.1		
0.50 - 1.00	10 - 24 (16.4)	263/194	0.936 ± 0.003	0.554 ± 0.026	1.430 ± 0.057	5.2 ± 0.2		
0.50 - 1.00	25 - 79 (38.5)	341/194	0.973 ± 0.001	0.446 ± 0.016	1.611 ± 0.048	2.0 ± 0.1		

r = 6.8% (0.9 TeV) ; 11.1% (7 TeV)

Double ratios

– Construction of reference sample \leftrightarrow to reduce bias:

$$\mathcal{R}(Q) = rac{R(Q)}{R_{_{MC}}(Q)} = rac{\left(rac{dN_{_{signal}}\,/\,dQ}{dN_{_{ref}}\,/\,dQ}
ight)}{\left(rac{dN_{_{MC,\,like}}\,/\,dQ}{dN_{_{MC,\,ref}}\,/\,dQ}
ight)}$$

$$\mathcal{R}(Q) = C \left[\ 1 + \lambda \ \Omega(Qr) \
ight] (1 + \delta Q)$$

$$\Omega(Qr) = \exp(-Qr)$$

- Calculated for all 7 reference samples [PRL 105, 32001 (2010)]

Results of fits to 0.9data							
Reference sample	p value (%)	C	λ	$r \ ({\rm fm})$	δ (10 ⁻³)		
Opposite charge	21.9	0.988 ± 0.003	0.56 ± 0.03	1.46 ± 0.06	-4 ± 2		
Opposite hem. same ch.	7.3	0.978 ± 0.003	0.63 ± 0.03	1.50 ± 0.06	11 ± 2		
Opposite hem. opp. ch.	11.9	0.975 ± 0.003	0.59 ± 0.03	1.42 ± 0.06	13 ± 2		
Rotated	0.02	0.929 ± 0.003	0.68 ± 0.02	1.29 ± 0.04	58 ± 3		
Mixed evts. (random)	1.9	1.014 ± 0.002	0.62 ± 0.04	1.85 ± 0.09	-20 ± 2		
Mixed evts. (same mult.)	12.2	0.981 ± 0.002	0.66 ± 0.03	1.72 ± 0.06	11 ± 2		
Mixed evts. (same mass)	1.7	0.976 ± 0.002	0.60 ± 0.03	1.59 ± 0.06	14 ± 2		
Combined	2.9	0.984 ± 0.002	0.63 ± 0.02	1.59 ± 0.05	8 ± 2		

20

Systematic Uncertainties- 2010 pp run

- Choice of reference sample \rightarrow main uncertainty in r

- » Estimate with r.m.s. spread with \neq ref. samples
- » Additional \rightarrow choice of MC sample (r.m.s. spread with \neq samples)
- » 7 TeV data more affected by MC choice

\sqrt{s}	$0.9~{ m TeV}$		$7 { m TeV}$	
	λ	$r~({\rm fm})$	λ	$r~({\rm fm})$
Choice of the reference sample	0.017	0.11	0.015	0.10
Choice of MC dataset	0.009	0.05	0.032	0.16
Effect of Coulomb corrections	0.017	0.01	0.017	0.02
Fit range	0.014	0.08	0.016	0.08
Total	0.029	0.15	0.042	0.21

Coulomb FSI - Gamow factor

- − Charged pairs: Coulomb interaction → affect the low-Q region
- Can be parametrized by Gamow factors:

$$\Upsilon_{_{SS}}(\eta) = rac{\eta \, / \, Q}{e^{2 \pi \eta / Q} - 1} \, ; \, \Upsilon_{_{OS}}(\eta) = rac{\eta \, / \, Q}{1 - e^{-2 \pi \eta / Q}} \quad (\eta = lpha_{_{em}} m_{_{\pi}})$$

• Testing compatibility: $[dN_{OS}/dQ(data)]/[dN/dQ(MC)]$ vs $\Upsilon_{os}(\eta)$

