Systematic measurements of HBT radii at RHIC

International Symposium for Multi-particle Dynamics September 28th 2011, Miyajima, Hiroshima, Japan

A. Enokizono - ISMD2011

9/28/2011

Outline

- Physics motivation and introduction of HBT femotoscopy
- Experimental results (HBT radii)
 - as functions of
 - collision centrality (N_{part}), multiplicity (N_{ch})
 - reaction plane ($\Delta \phi$), eccentricity (ϵ)
 - momentum (m_T)
 - PID (pion vs kaon)
- Comparison with theoretical models
 Summary

Physics motivation

3D HBT radii

HBT radii VS collision centrality

- HBT radii show linear increase as the cube-root of the number of participants (N_{part}^{1/3})

 N_{part}^{1/3} ~ Geometrical radius of the initial volume.
- The linearity is valid from p+p to central Au+Au collisions.
- Spherically symmetric source
 R_{side} ~ R_{out} ~ R_{long}.
- R_{out}/R_{side} ~ 1 for the entire
 N_{part}^{1/3} region.
 Short emission duration

Multiplicity scaling

A. Enokizono - ISMD2011

Multiplicity scaling VS $\sqrt{s_{NN}}$

- Multiplicity scaling is valid for R_{side} and R_{long} up to LHC energy, but not R_{out}.
 - $R_{out}(AGS) > R_{out}(RHIC) > R_{out}(LHC)$
- Multiplicity dependence of HBT radii in p+p collisions DO NOT scale with those for heavy-ion collisions.
 - Different mechanism for the hadronic freeze-out for A+A and p+p?
 - Contribution from jet?

Azimuthal HBT radii

What we measure: **eccentricity at freeze-out**, which depends initial eccentricity, pressure anisotropy, life time etc...

Freeze-out eccentricity

Retiere&MAL PRC70 (2004) 044907 9/28/2011

A. Enokizono - ISMD2011

Eccentricity VS collision energy

- Monotonic decrease of freeze-out eccentricity is reasonably described by UrQMD model
- CERES result which raised hope for finding of critical point seems to be excluded by STAR's new result with energy scan

Freeze-out eccentricity of Kaon

- > Kaon radii indictates $\varepsilon_{\text{final}} \sim \varepsilon_{\text{initial}}$
 - Different freeze-out mechanism between pion and kaon, e.g faster freeze-out for kaon
 - Different (higher) m_T region than pion, and looking at different correlation region?

9/28/2011

11

A. Enokizono - ISMD2011

Dynamical HBT radii

For collectively expanding source HBT size is not the geometrical size (R_{geom}) but the "length of homogeneity" size (x-p correlation)

Static source: $R_{geom} = R_{HBT}$ Expanding source: $R_{geom} > R_{HBT}$

HBT size decreases as the transverse mass momentum (m_T) or collective flow of source (v) increases.

 $R_{side}^2 = \frac{R_{geom}^2}{1 + (m_T/T_o)v^2}$

p+p

m_T dependence of HBT radii

- > All HBT radii decrease as a function of momentum (m_T) .
- Pion and Kaon radii are well scaled with m_T.
 - A clear evidence of the hadronic collective flow

$$R_{side}^{2} = \frac{R_{geom}^{2}}{1 + (m_{T}/T_{0})v^{2}}$$
(T₀~120MeV β_{f} ~0.7 at Au+Au 200GeV)

$$R_{geom} \sim 7.1 \ fm$$
(Au RMS = 3.07 fm)

- ≻ HBT radii for different collision system/energy show a very similar m_T dependence.
- $> Drop of HBT-\lambda at lower m_T \rightarrow Less chaotic source at low m_T?$

m_T dependence VS N_{part} & vs_{NN}

 Ratios of HBT radii between different N_{part} and collision energy are mostly flat as a function of m_T
 No difference for the degree of m

 No difference for the degree of m_T dependence
 between 64GeV–
 200GeV for Au+Au and Cu+Cu data.

m_T dependence (small systems)

STAR Phys. Rev C.83 064905 (2011)

- m_T dependence of HBT radii can be observed for small system (p+p, and e+e too!)
 - Bulk collective flow even in p+p, e+e collisions?
 - Final state hadronic rescattering effect?
- Need more detailed study using imaging analysis...

What is HBT- λ drop at low m_T ?

> In hot medium η ' mass could be reduced to quark model mass due to UA(1) symmetry restoration mass, resulting in enhancement of mass of η ' production (decrease of HBT- λ) at low m_T.

RHIC HBT puzzle

Before recently most of the hydro-models have failed to reproduce experimental HBT radii at the same time as other observables (e.g spectra, flows).

Resolving HBT puzzle

19

 1st order phase transition, no prethermal flow, no viscosity
 Include pre-thermal acceleration
 Stiffer equation of state
 Adding viscosity

- O Include all features
- One of the recent hydrodynamics calculations which successfully reproduce HBT R(m_T) at the same time as flow/spectra results.
- All of the physics features describing RHIC A+A collisions push R_{out}/R_{side} toward ~1.

A. Enokizono - ISMD2011

Summary

- HBT radii have been extensively and systematically measured for RHIC collision systems/energies.
 - Result values are consistent between RHIC experiments
- > HBT radii clearly scale with multiplicity but,
 - Rout are not scaled between AGS, RHIC and LHC energy regions.
 - Different scaling between A+A and p+p
- No sign for the critical point observed by HBT so far...
- More interesting HBT analyses (e.g. HBT radii vs. v₃, 3D imaging) are on-going.