The tau-mode

Elongation?

New Stuff

Bose-Einstein Correlations, the τ -model, and jets in e⁺e⁻ annihilation

W.J. Metzger

Radboud University Nijmegen

XLI International Symposium on Multiparticle Dynamics Miyajima 26–30 September 2011

The tau-model

Elongation?

New Stuff

Outline

1. Old stuff — Eur. Phys. J. C (2011) 71:1648 25 pages — quickly summarize

2. New stuff

The tau-mode

Elongation?

New Stuff

BEC Introduction

$$R_2 = \frac{\rho_2(p_1, p_2)}{\rho_1(p_1)\rho_1(p_2)} = \frac{\rho_2(Q)}{\rho_0(Q)}$$

Assuming particles produced incoherently with spatial source density S(x),

$$R_2(Q) = 1 + \lambda |\widetilde{S}(Q)|^2$$

where $\widetilde{S}(Q) = \int dx \, e^{iQx} S(x)$ – Fourier transform of S(x) $\lambda = 1$ — $\lambda < 1$ if production not completely incoherent

Assuming S(x) is a Gaussian with radius $r \implies R_2(Q) = 1 + \lambda e^{-Q^2 r^2}$

▶ intro

Elongation?

New Stuff

The L3 Data

- $e^+e^- \longrightarrow$ hadrons at $\sqrt{s} \approx M_Z$
- about 36 · 10⁶ like-sign pairs of well measured charged tracks from about 0.8 · 10⁶ events
- about $0.5 \cdot 10^6$ 2-jet events Durham $y_{cut} = 0.006$
- about 0.3 · 10⁶ > 2 jets, "3-jet events"
- use mixed events for reference sample, ρ₀

Results – 'Classic' Parametrizations $R_2 = \gamma \cdot [1 + \lambda G] \cdot (1 + \epsilon Q)$

- Gaussian
 - $\boldsymbol{G} = \exp\left(-(\boldsymbol{r}\boldsymbol{Q})^2\right)$
- Edgeworth expansion $G = \exp(-(rQ)^2)$ $\cdot \left[1 + \frac{\kappa}{3!}H_3(rQ)\right]$ Gaussian if $\kappa = 0$ $\kappa = 0.71 \pm 0.06$
- symmetric Lévy $G = \exp(-|rQ|^{\alpha})$ $0 < \alpha \le 2$ $\alpha = 1.34 \pm 0.04$

Poor χ^2 . Edgeworth and Lévy better than Gaussian, but poor. Problem is the dip of R_2 in the region 0.6 < Q < 1.5 GeV

Elongation?

New Stuff

The au-model

T.Csörgő, W.Kittel, W.J.Metzger, T.Novák, Phys.Lett.**B663**(2008)214 T.Csörgő, J.Zimányi, Nucl.Phys.**A517**(1990)588

Assume avg. production point is related to momentum:

 $\overline{x}^{\mu}(p^{\mu}) = a \tau p^{\mu}$

where for 2-jet events, $a = 1/m_t$

 $\tau = \sqrt{\overline{t}^2 - \overline{r}_z^2}$ is the "longitudinal" proper time and $m_t = \sqrt{E^2 - p_z^2}$ is the "transverse" mass

 Let δ_Δ(x^μ - x̄^μ) be dist. of prod. points about their mean, and H(τ) the dist. of τ. Then the emission function is S(x, p) = ∫₀[∞] dτH(τ)δ_Δ(x - aτp)ρ₁(p)

• In the plane-wave approx. E.B.Yano, S.E.Koonin, Phys.Lett.**B78**(1978)556. $\rho_2(p_1, p_2) = \int d^4 x_1 d^4 x_2 S(x_1, p_1) S(x_2, p_2) \left(1 + \cos\left([p_1 - p_2][x_1 - x_2]\right)\right)$ • Assume $\delta_{\Delta}(x - a \tau p)$ is very narrow — a δ -function. Then

 $R_2(p_1, p_2) = 1 + \lambda \operatorname{Re}\widetilde{H}\left(\frac{a_1 Q^2}{2}\right) \widetilde{H}\left(\frac{a_2 Q^2}{2}\right), \quad \widetilde{H}(\omega) = \int \mathrm{d}\tau H(\tau) \exp(i\omega\tau)$

Elongation?

New Stuff

BEC in the au-model

• Assume a Lévy distribution for $H(\tau)$ Since no particle production before the interaction, $H(\tau)$ is one-sided. Characteristic function is $\widetilde{H}(\omega) = \exp\left[-\frac{1}{2}\left(\Delta\tau|\omega|\right)^{\alpha}\left(1 - i\operatorname{sign}(\omega)\tan\left(\frac{\alpha\pi}{2}\right)\right) + i\omega\tau_{0}\right], \quad \alpha \neq 1$

where

- α is the index of stability;
- τ_0 is the proper time of the onset of particle production;
- $\Delta \tau$ is a measure of the width of the distribution.
- Then, R₂ depends on Q, a₁, a₂

$$R_{2}(Q, a_{1}, a_{2}) = \gamma \left\{ 1 + \lambda \cos \left[\frac{\tau_{0}Q^{2}(a_{1}+a_{2})}{2} + \tan \left(\frac{\alpha \tau}{2} \right) \left(\frac{\Delta \tau Q^{2}}{2} \right)^{\alpha} \frac{a_{1}^{\alpha} + a_{2}^{\alpha}}{2} \right] \right. \\ \left. \cdot \exp \left[- \left(\frac{\Delta \tau Q^{2}}{2} \right)^{\alpha} \frac{a_{1}^{\alpha} + a_{2}^{\alpha}}{2} \right] \right\} \cdot \left(1 + \epsilon Q \right)$$

The tau-model

Elongation?

New Stuff

BEC in the au-model

$$R_{2}(Q, \boldsymbol{a}_{1}, \boldsymbol{a}_{2}) = \gamma \left\{ 1 + \lambda \cos \left[\frac{\tau_{0}Q^{2}(\boldsymbol{a}_{1} + \boldsymbol{a}_{2})}{2} + \tan \left(\frac{\alpha \pi}{2} \right) \left(\frac{\Delta \tau Q^{2}}{2} \right)^{\alpha} \frac{\boldsymbol{a}_{1}^{\alpha} + \boldsymbol{a}_{2}^{\alpha}}{2} \right] \\ \cdot \exp \left[- \left(\frac{\Delta \tau Q^{2}}{2} \right)^{\alpha} \frac{\boldsymbol{a}_{1}^{\alpha} + \boldsymbol{a}_{2}^{\alpha}}{2} \right] \right\} \cdot (1 + \epsilon Q)$$

Simplification:

- effective radius, *R*, defined by $R^{2\alpha} = \left(\frac{\Delta \tau}{2}\right)^{\alpha} \frac{a_1^{\alpha} + a_2^{\alpha}}{2}$
- Particle production begins immediately, $\tau_0 = 0$
- Then

ł

 $R_{2}(Q) = \gamma \left[1 + \lambda \cos \left((R_{a}Q)^{2\alpha} \right) \exp \left(- (RQ)^{2\alpha} \right) \right] \cdot (1 + \epsilon Q)$ where $R_{a}^{2\alpha} = \tan \left(\frac{\alpha \pi}{2} \right) R^{2\alpha}$

Compare to sym. Lévy parametrization:

$$R_2(Q) = \gamma \left[1 + \lambda \right] \exp \left[-|rQ|^{-\alpha} \right] (1 + \epsilon Q)$$

з

Q (GeV)

New Stuff

Full τ -model for 2-jet events — $a = 1/m_{t}$ $R_{2}(Q, m_{t1}, m_{t2}) = \gamma \left\{ 1 + \lambda \cos \left[\frac{\tau_{0}Q^{2}(m_{t1}+m_{t2})}{2(m_{t1}m_{t2})} + \tan \left(\frac{\alpha \pi}{2} \right) \left(\frac{\Delta \tau Q^{2}}{2} \right)^{\alpha} \frac{m_{t1}^{\alpha} + m_{t2}^{\alpha}}{2(m_{t1}m_{t2})^{\alpha}} \right] \right\}$ $\cdot \exp\left[-\left(\frac{\Delta\tau Q^2}{2}\right)^{\alpha} \frac{m_{t1}^{\alpha} + m_{t2}^{\alpha}}{2(m_1 m_2)^{\alpha}}\right] \cdot (1 + \epsilon Q)$ 1.6 1.4 • Fit $R_2(Q)$ using \mathbb{R}_2 avg m_{t1} , m_{t2} in each Q 1.2 bin, $m_{t1} > m_{t2}$ • $\tau_0 = 0.00 \pm 0.02$ 1.0 so fix to 0

• $\chi^2/dof = 90/95$

🕨 fit

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

0.8 0.02 <1 0.00 -0.02 -0.04

Elongation?

New Stuff

Full τ -model for 2-jet events

- τ -model predicts dependence on m_t , $R_2(Q, m_{t1}, m_{t2})$
- Parameters α , $\Delta \tau$, τ_0 are independent of $m_{\rm t}$
- λ (strength of BEC) can depend on $m_{\rm t}$

New Stuff

Elongation?

- Previous results using fits of Gaussian or Edgeworth found (in LCMS) $R_{\rm side}/R_{\rm L}\approx 0.64$
- But we find that Gaussian and Edgeworth fit R₂(Q) poorly
- τ -model predicts no elongation and fits the data well
- Could the elongation results be an artifact of an incorrect fit function?
 artic the - model in pand of modification?
 - or is the τ -model in need of modification?
- So, we modify *ad hoc* the *τ*-model description to allow elongation (more on this later)
- and find $R_{side}/R_{L}=0.61\pm0.02-elongation$ is real
- Perhaps, a should be different for transverse/longitudinal $\overline{x}^{\mu}(p^{\mu}) = a \tau p^{\mu}, \qquad a = 1/m_t$ for 2-jet

The tau-model

Elongation?

New Stuff

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Outline

New stuff — very preliminary

Are BEC sensitive to jet structure?

Elongation?

- Jets Durham algorithm
- y₂₃ is value of y_{cut} where number of jets changes from 2 to 3
- force event to have 3 jets
- define regions of y₂₃:

 $y_{23} < 0.002$ $0.002 < y_{23} < 0.006$ $0.006 < y_{23} < 0.018$ $0.018 < y_{23}$

narrow two-jet less narrow two-jet narrow three-jet wide three-jet

 $y_{23} < 0.006$ two-jet $0.006 < y_{23}$ three-jet

To stabilize fits against large correlation of α , R, fix $\alpha = 0.443$

- R increases as number of jets increases
- or as jets become more separated

The tau-mode

Elongation?

New Stuff

Jets - Elongation

Results in LCMS frame: Longitudinal = Thrust axis

$$\begin{array}{c} R_{\rm L}/R_{side} \\ {\tt L3} & 1.25\pm0.03^{+0.36}_{-0.05} \\ {\tt OPAL} & 1.19\pm0.03^{+0.08}_{-0.01} \end{array}$$

(ZEUS finds similar results in ep) ${\sim}25\%$ elongation along thrust axis

1

OPAL:

Elongation larger for narrower jets

Elongation?

LCMS and the Simplified au-model

Consider 2 frames:

1. LCMS: $\begin{aligned} Q^2 &= Q_{\rm L}^2 + Q_{\rm side}^2 + Q_{\rm out}^2 - (\Delta E)^2 \\ &= Q_{\rm L}^2 + Q_{\rm side}^2 + Q_{\rm out}^2 \left(1 - \beta^2\right) , \quad \beta = \frac{p_{\rm tout} + p_{\rm 2out}}{E_1 + E_2} \end{aligned}$ 2. LCMS-rest: $\begin{aligned} Q^2 &= Q_{\rm L}^2 + Q_{\rm side}^2 + q_{\rm out}^2 , \qquad q_{\rm out}^2 = Q_{\rm out}^2 \left(1 - \beta^2\right) \end{aligned}$

 q_{out} is Q_{out} boosted (β) along out direction to rest frame of pair

In simplified τ -model, replace $R^2 Q^2$ by 1. $A^2 = R_L^2 Q_L^2 + R_{side}^2 Q_{side}^2 + \rho_{out}^2 Q_{out}^2$ 2. $B^2 = R_L^2 Q_L^2 + R_{side}^2 Q_{side}^2 + r_{out}^2 q_{out}^2$ Then in τ -model, for case 1: $R_2(Q_L, Q_{side}, Q_{out}) = \gamma \left[1 + \lambda \cos \left(\tan \left(\frac{\alpha \pi}{2} \right) A^{2\alpha} \right) \exp \left(-A^{2\alpha} \right) \right]$ $\cdot \left(1 + \epsilon_L Q_L + \epsilon_{side} Q_{side} + \epsilon_{out} Q_{out} \right)$

and comparable expression for case 2, $R_2(Q_L, Q_{side}, q_{out})$

The tau-model

Elongation?

p. 19

The tau-mode

Elongation?

New Stuff ○○ ○○○●○○

ϕ major-out

- event plane \equiv (thrust,major)
- out direction tends to be in the event plane $out \approx in$
- side direction tends to be out of the plane side \approx out
- this tendency increases with *y*₂₃
- suggests that lack of azimuthal symmetry is due to difference in fragmentation in and out of the event plane

(日) (周) (日) (日) (日)

Elongation?

in/out of event plane

R larger in the event plane

Elongation?

New Stuff — Summary

The tau-mode

Elongation?

Acknowledgments

- Tamás Novák, Tamás Csörgő, Wolfram Kittel were instrumental for the 'Old Stuff'
- I take full responsibility for the 'New Stuff'

<ロ> <部> < => < => < => < => < =</p>

Application

Intro

lcms

details

A Comment

- τ -model is closely related to a string picture
 - strong x-p correlation
 - fractal Lévy distribution
- CMS finds BEC in pp at 0.9 and 7 TeV are described by simplified au-model formula JHEP 05 (2011) 029
- suggests that BEC in pp is (mostly) from string fragmentation

Applications • 0 0 Intro

Emission Function of 2-jet Events.

In the τ -model, the emission function in configuration space is

$$S(\vec{x},\tau) = \frac{1}{\overline{n}} \frac{\mathrm{d}^4 n}{\mathrm{d}\tau \mathrm{d}\vec{x}} = \frac{1}{\overline{n}} \left(\frac{m_{\mathrm{t}}}{\tau}\right)^3 H(\tau) \rho_1 \left(\vec{p} = \frac{m_{\mathrm{t}}\vec{x}}{\tau}\right)$$

For simplicity, assume $\rho_1(\vec{p}) = \rho_y(y)\rho_{p_t}(p_t)/\overline{n}$ $(\rho_1, \rho_y, \rho_{p_t} \text{ are inclusive single-particle distributions})$ Then $S(\vec{x}, \tau) = \frac{1}{\overline{n}^2}H(\tau)G(\eta)I(r)$ Strongly correlated $x, p \Longrightarrow$ $\eta = y$ $r = p_t\tau/m_t$ $G(\eta) = \rho_y(\eta)$ $I(r) = \left(\frac{m_t}{\tau}\right)^3 \rho_{p_t}(rm_t/\tau)$

So, using experimental $\rho_y(y)$, $\rho_{p_t}(p_t)$ dists. and $H(\tau)$ from BEC fits, we can reconstruct *S*. expt. – Factorization OK

Intro

Emission Function of 2-jet Events.

"Boomerang" shape

Particle production is close to the light-cone

◆□ > ◆母 > ◆目 > ◆日 > 通目 めんの

Applications

 LLA parton shower leads to a fractal in momentum space fractal dimension is related to α_s

 α_{s}

- Lévy dist. arises naturally from a fractal, or random walk, or anomalous diffusion Metzler and Klafter, Phys.Rep.339(2000)1.
- strong momentum-space/configuration space correlation of τ -model \implies fractal in configuration space with same α
- generalized LPHD suggests particle dist. has same properties as gluon dist.
- Putting this all together leads to

$$\alpha_{\rm s} = \frac{2\pi}{3} \alpha^2$$

- Using our value of $\alpha = 0.47 \pm 0.04$ yields $\alpha_s = 0.46 \pm 0.04$
- This value is reasonable for a scale of 1–2 GeV, where production of hadrons takes place $\alpha_{\rm s}(m_{\tau}\approx 1.8\,{\rm GeV})=0.34\pm0.03\,{\rm PDG}$ *cf.*, from τ decays

Gustafson et al.

Csörgő et al.

cms

Application

Intro

lcms

 $R_2(Q) = \frac{\rho(Q)}{\rho_0(Q)}$

details

BEC Introduction *q*-particle density $\rho_q(p_1,...,p_q) = \frac{1}{\sigma_{tri}} \frac{d^q \sigma_q(p_1,...,p_q)}{dp_1 dp_2}$ 2-particle correlation: $\frac{\rho_2(p_1, p_2)}{\rho_1(p_1)\rho_1(p_2)}$ To study only BEC, not all correlations, $\rho_0(p_1, p_2)$ be the 2-particle density if no BEC let $(= \rho_2$ of the 'reference sample') and define $R_{2}(p_{1}, p_{2}) = \frac{\rho_{2}(p_{1}, p_{2})}{\rho_{1}(p_{1})\rho_{1}(p_{2})} \cdot \frac{\rho_{1}(p_{1})\rho_{1}(p_{2})}{\rho_{0}(p_{1}, p_{2})} = \frac{\rho_{2}(p_{1}, p_{2})}{\rho_{0}(p_{1}, p_{2})}$

Since 2- π BEC only at small Q

$$Q = \sqrt{-(p_1 - p_2)^2} = \sqrt{M_{12}^2 - 4m_2^2}$$

integrate over other variables:

p. 28

Applications 000 Intro

lcms

details

LCMS

Advantages of LCMS:

$$\begin{array}{lll} Q^2 &=& Q_{\rm L}^2 + Q_{\rm side}^2 + Q_{\rm out}^2 - (\Delta E)^2 \\ &=& Q_{\rm L}^2 + Q_{\rm side}^2 + Q_{\rm out}^2 \left(1 - \beta^2\right) & \text{ where } \beta \equiv \frac{p_{\rm out \, 1} + p_{\rm out \, 2}}{E_1 + E_2} \end{array}$$

Thus, the energy difference,

and therefore the difference in emission time of the pions couples only to the out-component, $Q_{\rm out}$.

Thus,

 $Q_{\rm L}$ and $Q_{\rm side}$ reflect only spatial dimensions of the source $Q_{\rm out}$ reflects a mixture of spatial and temporal dimensions.

Applicatior

Intro

lcms

details

Q Dependence

 $\begin{array}{ll} R_2(\textit{Q}_L,\textit{Q}_{side},\textit{q}_{out}) \text{ vs.} \\ \textit{Q}_L \text{ for } \textit{Q}_{side},\textit{q}_{out} < 0.08 \, \mathrm{GeV} \\ \textit{Q}_{side} \text{ for } \textit{Q}_L,\textit{q}_{out} < 0.08 \, \mathrm{GeV} \\ \textit{q}_{out} \text{ for } \textit{Q}_L,\textit{Q}_{side} < 0.08 \, \mathrm{GeV} \end{array}$

Dependence on components of Q is preferred. $r_{out} > R_L > R_{side}$ Not azimuthally symmetric

▶ elong

Summary of Simplified au-model

	α	<i>R</i> (fm)	R _a (fm)	CL
2-jet 3-jet 3-jet	$\begin{array}{c} 0.41 \pm 0.02 \substack{+0.04 \\ -0.06} \\ 0.35 \pm 0.01 \substack{+0.03 \\ -0.04} \\ 0.41 \pm \text{fixed} \end{array}$	$\begin{array}{c} 0.79 \pm 0.04 \substack{+0.09 \\ -0.19} \\ 1.06 \pm 0.05 \substack{+0.59 \\ -0.31} \\ 0.93 \pm 0.03 \end{array}$	$\begin{array}{c} 0.69 \pm 0.04^{+0.21}_{-0.09} \\ 0.85 \pm 0.04^{+0.15}_{-0.05} \\ 0.76 \pm 0.01 \end{array}$	57% 76% 38%
2-jet 3-jet 3-jet	$\begin{array}{c} 0.44 \pm 0.01 \substack{+0.05 \\ -0.02} \\ 0.42 \pm 0.01 \substack{+0.02 \\ -0.04} \\ 0.44 \pm \text{fixed} \end{array}$	$\begin{array}{c} 0.78 \pm 0.04^{+0.09}_{-0.16} \\ 0.98 \pm 0.04^{+0.55}_{-0.14} \\ 0.87 \pm 0.01 \end{array}$		49% 10% 3%

- consistent values of α
- $R_a^{2\alpha} = \tan\left(\frac{\alpha\pi}{2}\right) R^{2\alpha}$ to 0.5σ for 2-jet and to 1.5σ for 3-jet
- Simplified τ -model works well
- R seems to be larger for 3-jet than for 2-jet events

▶ simp3j

Applications

Intro

Fit Results Simplified au-model

parameter	two-jet	three-jet	
λ	$0.63 \pm 0.03^{+0.08}_{-0.35}$	$0.92\pm0.05^{+0.06}_{-0.48}$	
α	$0.41 \pm 0.02^{+0.04}_{-0.06}$	$0.35\pm0.01^{+0.03}_{-0.04}$	
<i>R</i> (fm)	$0.79 \pm 0.04^{+0.09}_{-0.19}$	$1.06 \pm 0.05^{+0.59}_{-0.31}$	
$R_{ m a}$ (fm)	$0.69 \pm 0.04^{+0.21}_{-0.09}$	$0.85\pm0.04^{+0.15}_{-0.05}$	
$\epsilon \; (\text{GeV}^{-1})$	$0.001 \pm 0.002^{+0.005}_{-0.008}$	$0.000 \pm 0.002^{+0.001}_{-0.007}$	
γ	$0.988 \pm 0.005^{+0.026}_{-0.012}$	$0.997 \pm 0.005^{+0.019}_{-0.002}$	
$\chi^2/{\rm DoF}$	91/94	84/94	
confidence level	57%	76%	

Applications

Intro

Fit Results Simplified au-model

parameter	two-jet	three-jet	
λ	$0.61 \pm 0.03^{+0.08}_{-0.26}$	$0.84 \pm 0.04^{+0.04}_{-0.37}$	
α	$0.44 \pm 0.01 ^{+0.05}_{-0.02}$	$0.42\pm0.01^{+0.02}_{-0.04}$	
<i>R</i> (fm)	$0.78 \pm 0.04^{+0.09}_{-0.16}$	$0.98 \pm 0.04^{+0.55}_{-0.14}$	
$\epsilon \; (\text{GeV}^{-1})$	$0.005 \pm 0.001 \pm 0.003$	$0.008 \pm 0.001 \pm 0.005$	
γ	$0.979 \pm 0.002^{+0.009}_{-0.003}$	$0.977 \pm 0.001 ^{+0.013}_{-0.008}$	
χ^2 /DoF	95/95	113/95	
confidence level	49%	10%	

cms

Fit Results Full τ -model for 2-jet events

<i>m</i> t regio	average		confidence		
m_{t1}	m_{t2}	$m_{\rm t}~({\rm GeV})$		level	λ
		<i>Q</i> < 0.4	all	(%)	
0.14 – 0.26	0.14 – 0.22	0.19	0.19	10	0.39 ± 0.02
0.14 – 0.34	0.22 – 0.30	0.27	0.27	48	0.76 ± 0.03
0.14 – 0.46	0.30 - 0.42	0.37	0.37	74	0.83 ± 0.03
0.14 – 0.66	0.42 – 4.14	0.52	0.52	13	0.97 ± 0.04
0.26 – 0.42	0.14 – 0.22	0.25	0.26	22	0.53 ± 0.02
0.34 – 0.46	0.22 – 0.30	0.32	0.33	33	$\textbf{0.80} \pm \textbf{0.03}$
0.46 – 0.58	0.30 - 0.42	0.43	0.44	34	0.91 ± 0.04
0.66 – 0.86	0.42 – 4.14	0.65	0.65	66	1.01 ± 0.05
0.42 – 0.62	0.14 – 0.22	0.34	0.34	17	0.41 ± 0.03
0.46 – 0.70	0.22 – 0.30	0.41	0.41	55	0.64 ± 0.03
0.58 – 0.82	0.30 - 0.42	0.52	0.52	59	0.70 ± 0.04
0.86 – 1.22	0.42 – 4.14	0.80	0.81	24	0.66 ± 0.05
0.70 – 4.14	0.22 – 0.30	0.59	0.65	4	0.37 ± 0.04
0.82 – 4.14	0.30 - 0.42	0.71	0.76	11	0.56 ± 0.05

Intro

Fit Result $R_2(Q, m_{t1}, m_{t2})$

parameter	
λ	$0.58 \pm 0.03^{+0.08}_{-0.24}$
α	$0.47 \pm 0.01^{+0.04}_{-0.02}$
Δau (fm)	$1.56 \pm 0.12^{+0.32}_{-0.45}$
$\epsilon \; (\text{GeV}^{-1})$	$0.001 \pm 0.001 \pm 0.003$
γ	$0.988 \pm 0.002^{+0.006}_{-0.002}$
χ^2 /DoF	90/95
confidence level	62%

Intro

lcm

details

$R_{a}^{2\alpha} = \tan\left(\frac{\alpha\pi}{2}\right) R^{2\alpha}$ χ^2 /dof = 95/95 1.6 1.4 1.2 < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ p. 39

"Boomerang" shape

cms

Applications

Intro

lcms

details

 $\alpha = 0.47$ $\Delta \tau = 1.56$ or $\gamma = 0.357$

