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Introduction The tau-model Elongation? New Stuff

Outline

1. Old stuff — Eur. Phys. J. C (2011) 71:1648

25 pages — quickly summarize

2. New stuff

p. 2



Introduction The tau-model Elongation? New Stuff

BEC Introduction

R2 = ρ2(p1,p2)
ρ1(p1)ρ1(p2)

= ρ2(Q)
ρ0(Q)

Assuming particles produced incoherently
with spatial source density S(x),

R2(Q) = 1 + λ|S̃(Q)|2

where S̃(Q)=
∫

dx eiQxS(x) – Fourier transform of S(x)
λ = 1 — λ < 1 if production not completely incoherent

Assuming S(x) is a Gaussian with radius r =⇒
R2(Q) = 1 + λ e−Q2r2

intro
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The L3 Data

• e+e− −→ hadrons at
√

s ≈ MZ

• about 36 · 106 like-sign pairs of well measured charged
tracks from about 0.8 · 106 events

• about 0.5 · 106 2-jet events — Durham ycut = 0.006
• about 0.3 · 106 > 2 jets, “3-jet events”
• use mixed events for reference sample, ρ0
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Results – ‘Classic’ Parametrizations
R2 = γ · [1 + λG] · (1 + εQ)

• Gaussian
G = exp

(
−(rQ)2)

• Edgeworth expansion
G = exp

(
−(rQ)2)

·
[
1 + κ

3!H3(rQ)
]

Gaussian if κ = 0
κ = 0.71± 0.06

• symmetric Lévy
G = exp (−|rQ|α)

0 < α ≤ 2
α = 1.34± 0.04 Gauss Edgew Lévy

CL: 10−15 10−5 10−8

Poor χ2. Edgeworth and Lévy better than Gaussian, but poor.
Problem is the dip of R2 in the region 0.6 < Q < 1.5 GeV
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The τ -model
T.Csörgő, W.Kittel, W.J.Metzger, T.Novák, Phys.Lett.B663(2008)214

T.Csörgő, J.Zimányi, Nucl.Phys.A517(1990)588

• Assume avg. production point is related to momentum:
xµ(pµ) = a τpµ

where for 2-jet events, a = 1/mt

τ =

√
t
2 − r2

z is the “longitudinal” proper time
and mt =

√
E2 − p2

z is the “transverse” mass

• Let δ∆(xµ − xµ) be dist. of prod. points about their mean,
and H(τ) the dist. of τ . Then the emission function is

S(x , p) =
∫∞

0 dτH(τ)δ∆(x − a τp)ρ1(p)

• In the plane-wave approx. F.B.Yano, S.E.Koonin, Phys.Lett.B78(1978)556.

ρ2(p1, p2) =
∫

d4x1d4x2S(x1, p1)S(x2, p2)
(
1 + cos

(
[p1 − p2] [x1 − x2]

) )
• Assume δ∆(x − a τp) is very narrow — a δ-function. Then

R2(p1, p2) = 1 + λ ReH̃
(

a1Q2

2

)
H̃

(
a2Q2

2

)
, H̃(ω) =

∫
dτH(τ) exp(iωτ)
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BEC in the τ -model

• Assume a Lévy distribution for H(τ)
Since no particle production before the interaction,
H(τ) is one-sided.
Characteristic function is
H̃(ω) = exp

[
− 1

2

(
∆τ |ω|

)α (
1− i sign(ω) tan

(
απ
2

) )
+ i ωτ0

]
, α 6= 1

where
• α is the index of stability;
• τ0 is the proper time of the onset of particle production;
• ∆τ is a measure of the width of the distribution.

• Then, R2 depends on Q, a1, a2

R2(Q, a1, a2) = γ
{

1 + λ cos
[

τ0Q2(a1+a2)
2 + tan

(
απ
2

) (
∆τQ2

2

)α aα
1 +aα

2
2

]
·exp

[
−

(
∆τQ2

2

)α aα
1 +aα

2
2

]}
· (1 + εQ)
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BEC in the τ -model

R2(Q, a1, a2) = γ
{

1 + λ cos
[

τ0Q2(a1+a2)
2 + tan

(
απ
2

) (
∆τQ2

2

)α aα
1 +aα

2
2

]
·exp

[
−

(
∆τQ2

2

)α aα
1 +aα

2
2

]}
· (1 + εQ)

Simplification:

• effective radius, R, defined by R2α =
(

∆τ
2

)α aα
1 +aα

2
2

• Particle production begins immediately, τ0 = 0
• Then

R2(Q) = γ
[
1 + λ cos

(
(RaQ)2α

)
exp

(
− (RQ)2α

)]
· (1 + εQ)

where R2α
a = tan

(
απ
2

)
R2α

Compare to sym. Lévy parametrization:
R2(Q) = γ

[
1 + λ exp

[
−|rQ| α

]]
(1 + εQ)
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2-jet Results on Simplified τ -model from L3 Z decay

Ra free
χ2/dof = 91/94

R2α
a = tan

(
απ
2

)
R2α

χ2/dof = 95/95
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3-jet Results on Simplified τ -model from L3 Z decay
Ra free

χ2/dof = 84/94
R2α

a = tan
(

απ
2

)
R2α

χ2/dof = 113/95
CL = 10%

R-summary
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Full τ -model for 2-jet events — a = 1/mt

R2(Q, mt1, mt2) = γ
{

1 + λ cos
[

τ0Q2(mt1+mt2)
2(mt1mt2)

+ tan
(

απ
2

) (
∆τQ2

2

)α mα
t1 +mα

t2
2(mt1mt2)α

]
·exp

[
−

(
∆τQ2

2

)α mα
t1 +mα

t2
2(mt1mt2)α

]}
· (1 + εQ)

• Fit R2(Q) using
avg mt1, mt2 in each Q
bin, mt1 > mt2

• τ0 = 0.00± 0.02
so fix to 0

• χ2/dof = 90/95 fit
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Full τ -model for 2-jet events

• τ -model predicts dependence on mt, R2(Q, mt1, mt2)

• Parameters α, ∆τ , τ0 are independent of mt

• λ (strength of BEC) can depend on mt

1

2
mt2

3

4

1 2mt1
3 4GeV

• divide mt1-mt2 plane in regions
(equal statistics)

• in each region fit R2(Q)
using avg mt1, mt2 in each Q bin
with α, ∆τ , fixed to values found
for entire plane and τ0 = 0 fits

0 1CL
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Elongation?

• Previous results using fits of Gaussian or Edgeworth found
(in LCMS) Rside/RL ≈ 0.64

• But we find that Gaussian and Edgeworth fit R2(Q) poorly
• τ -model predicts no elongation and fits the data well
• Could the elongation results be an artifact of an incorrect fit

function?
or is the τ -model in need of modification?

• So, we modify ad hoc the τ -model description to allow
elongation (more on this later)

• and find Rside/RL = 0.61± 0.02 – elongation is real
• Perhaps, a should be different for transverse/longitudinal

xµ(pµ) = a τpµ, a = 1/mt for 2-jet

restQdep
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Outline

New stuff — very preliminary

Are BEC sensitive to jet structure?
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Jets

• Jets — Durham algorithm
• y23 is value of ycut where number

of jets changes from 2 to 3
• force event to have 3 jets
• define regions of y23:

log10(y23) Durham

ID
Entries

           6011
         804574

mkhists_d06_data94.hst
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0
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15000

20000

25000

-4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5

y23 < 0.002 narrow two-jet or
0.002 < y23 < 0.006 less narrow two-jet y23 < 0.006 two-jet
0.006 < y23 < 0.018 narrow three-jet 0.006 < y23 three-jet
0.018 < y23 wide three-jet

To stabilize fits against large correlation of α, R, fix α = 0.443
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Jets

L3 preliminary
OPAL: Z.Phys. C72 (1996) 389

• R increases as number of jets increases
• or as jets become more separated
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Jets - Elongation

Results in LCMS frame: Longitudinal = Thrust axis LCMS

RL/Rside

L3 1.25± 0.03+0.36
−0.05

OPAL 1.19± 0.03+0.08
−0.01

(ZEUS finds similar results in ep)
∼25% elongation along thrust axis

OPAL:

Elongation larger for narrower jets
ycut

r l
/r

t s
id

e

inclusive

(e)

1.1

1.15

1.2

1.25

1.3

1.35

1.4

0 0.02 0.04 0.06 0.08   

(Durham)
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LCMS and the Simplified τ -model
Consider 2 frames:
1. LCMS: Q2 = Q2

L + Q2
side + Q2

out − (∆E)2

= Q2
L + Q2

side + Q2
out

(
1− β2) , β = p1out+p2out

E1+E2

2. LCMS-rest: Q2 = Q2
L + Q2

side + q2
out , q2

out = Q2
out

(
1− β2)

qout is Qout boosted (β) along out direction to rest frame of pair

In simplified τ -model, replace R2Q2 by
1. A2 = R2

LQ2
L + R2

sideQ
2
side + ρ2

outQ2
out

2. B2 = R2
LQ2

L + R2
sideQ

2
side + r2

outq2
out

Then in τ -model, for case 1:

R2(QL, Qside, Qout) = γ

[
1 + λ cos

(
tan

(απ

2

)
A2α

)
exp

(
−A2α

)]
· (1 + εLQL + εsideQside + εoutQout)

and comparable expression for case 2, R2(QL, Qside, qout)
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Jets - ElongationL3 preliminary

Note:
Rside < RL
rout > RL
Not
azimuthally
symmetric
not even
for narrow
2-jet
trigger
bias??

With increasing y23, RL, ρout ≈ constant, Rside, rout increase
narrow 2-jet limit: Rside ≈ RL/2 rout ≈ 1.1RL

wide 3-jet limit: Rside ≈ RL rout ≈ 1.4RL
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φ major-out

• event plane ≡ (thrust,major)
• out direction tends to be in

the event plane out ≈ in
• side direction tends to be out

of the plane side ≈ out
• this tendency increases with

y23

• suggests that lack of
azimuthal symmetry is due to
difference in fragmentation in
and out of the event plane

L3 preliminary
ID            1214

φ/π  (out-major)

all y23
y23<0.002
0.002<y23<0.006
0.006<y23<0.018
0.018<y23

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
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in/out of event plane
use only tracks with φ(trk-major) < 45◦ in plane

φ(trk-major) > 45◦ out of plane

L3 preliminary

R larger in the event plane
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New Stuff — Summary

narrow 2-jet limit wide 3-jet limit
R ≈ 0.7 fm 0.9 fm

RL ≈ 0.9 fm – constant
ρout ≈ 0.66 fm – constant

Rside ≈ RL/2 Rside ≈ RL
rout ≈ 1.1RL rout ≈ 1.4RL

out direction ≈ in event plane
side direction ≈ out of event plane

R in ≈ R out of plane R in > R out of plane
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Acknowledgments

• Tamás Novák, Tamás Csörgő, Wolfram Kittel
were instrumental for the ‘Old Stuff’

• I take full responsibility for the ‘New Stuff’
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cms Applications Intro lcms details

A Comment

• τ -model is closely related to a string picture
• strong x-p correlation
• fractal - Lévy distribution

• CMS finds BEC in pp at 0.9 and 7 TeV are described by
simplified τ -model formula JHEP 05 (2011) 029

• suggests that BEC in pp is (mostly) from string
fragmentation
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Emission Function of 2-jet Events.
In the τ -model, the emission function in configuration space is

S(~x , τ) =
1
n

d4n
dτd~x

=
1
n

(mt

τ

)3
H(τ)ρ1

(
~p =

mt~x
τ

)
For simplicity, assume ρ1(~p) = ρy(y)ρpt(pt)/n

(ρ1, ρy, ρpt are inclusive single-particle distributions)
Then S(~x , τ) = 1

n2 H(τ)G(η)I(r)
Strongly correlated x , p =⇒

η = y r = ptτ/mt

G(η) = ρy(η) I(r) =
(mt

τ

)3
ρpt(rmt/τ)

So, using experimental ρy(y), ρpt(pt) dists.
and H(τ) from BEC fits,
we can reconstruct S.

expt. –
Factorization OK

H(τ)

α = 0.47
∆τ = 1.56 fm

τ0 = 0
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Emission Function of 2-jet Events.

Integrating over r ,

“Boomerang” shape

Integrating over z,

Particle production is close to the light-cone
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αs
• LLA parton shower leads to a fractal in momentum space

fractal dimension is related to αs Gustafson et al.

• Lévy dist. arises naturally from a fractal, or random walk,
or anomalous diffusion Metzler and Klafter, Phys.Rep.339(2000)1.

• strong momentum-space/configuration space correlation of
τ -model =⇒ fractal in configuration space with same α

• generalized LPHD suggests particle dist. has same
properties as gluon dist.

• Putting this all together leads to Csörgő et al.

αs =
2π

3
α2

• Using our value of α = 0.47± 0.04 yields αs = 0.46± 0.04
• This value is reasonable for a scale of 1–2 GeV,

where production of hadrons takes place
cf., from τ decays αs(mτ ≈ 1.8 GeV) = 0.34± 0.03 PDG
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BEC Introduction
q-particle density ρq(p1, ..., pq) = 1

σtot

dqσq(p1,...,pq)
dp1...dpq

2-particle correlation:
ρ2(p1, p2)

ρ1(p1)ρ1(p2)

To study only BEC, not all correlations,
let ρ0(p1, p2) be the 2-particle density if no BEC
(= ρ2 of the ‘reference sample’) and define

R2(p1, p2) =
ρ2(p1, p2)

ρ1(p1)ρ1(p2)
· ρ1(p1)ρ1(p2)

ρ0(p1, p2)
=

ρ2(p1, p2)

ρ0(p1, p2)

Since 2-π BEC only at small Q

Q =
√
−(p1 − p2)2=

√
M2

12 − 4m2
π

integrate over other variables: R2(Q) =
ρ(Q)

ρ0(Q)
intro
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LCMS
The usual parametrization assumes a symmetric Gaussian
source
But, there is no reason to expect this symmetry in e+e−→ qq̄.
Therefore, do a 3-dim. analysis in the
Longitudinal Center of Mass System (LCMS):

Boost each π-pair along event
(thrust) axis pL1 = −pL2

~p1 + ~p2 defines ‘out’ axis

Qside ⊥ (QL, Qout)

event axisQL

Qout

p
→

1

p
→

2

p
→

1+p
→

2

advantage
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LCMS

Advantages of LCMS:

Q2 = Q2
L + Q2

side + Q2
out − (∆E)2

= Q2
L + Q2

side + Q2
out (1− β2) where β ≡ pout 1 + pout 2

E1 + E2

Thus, the energy difference,
and therefore the difference in emission time of the pions
couples only to the out-component, Qout.
Thus,
QL and Qside reflect only spatial dimensions of the source
Qout reflects a mixture of spatial and temporal dimensions.
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Q Dependence

R2(QL, Qside, qout) vs.
QL for Qside,qout< 0.08 GeV

Qside for QL,qout< 0.08 GeV
qout for QL,Qside< 0.08 GeV

Dependence on components of
Q is preferred.
rout > RL > Rside
Not azimuthally symmetric

elong

p. 31



cms Applications Intro lcms details

Summary of Simplified τ -model
α R (fm) Ra (fm) CL

2-jet 0.41 ± 0.02+0.04
−0.06 0.79 ± 0.04+0.09

−0.19 0.69 ± 0.04+0.21
−0.09 57%

3-jet 0.35 ± 0.01+0.03
−0.04 1.06 ± 0.05+0.59

−0.31 0.85 ± 0.04+0.15
−0.05 76%

3-jet 0.41 ± fixed 0.93 ± 0.03 0.76 ± 0.01 38%

2-jet 0.44 ± 0.01+0.05
−0.02 0.78 ± 0.04+0.09

−0.16 — 49%
3-jet 0.42 ± 0.01+0.02

−0.04 0.98 ± 0.04+0.55
−0.14 — 10%

3-jet 0.44 ± fixed 0.87 ± 0.01 — 3%

• consistent values of α

• R2α
a = tan

(
απ
2

)
R2α to 0.5σ for 2-jet and to 1.5σ for 3-jet

• Simplified τ -model works well fitR fitRR

• R seems to be larger for 3-jet than for 2-jet events

simp3j
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Fit Results Simplified τ -model

parameter two-jet three-jet

λ 0.63 ± 0.03+0.08
−0.35 0.92 ± 0.05+0.06

−0.48

α 0.41 ± 0.02+0.04
−0.06 0.35 ± 0.01+0.03

−0.04

R (fm) 0.79 ± 0.04+0.09
−0.19 1.06 ± 0.05+0.59

−0.31

Ra (fm) 0.69 ± 0.04+0.21
−0.09 0.85 ± 0.04+0.15

−0.05

ε (GeV−1) 0.001 ± 0.002+0.005
−0.008 0.000 ± 0.002+0.001

−0.007

γ 0.988 ± 0.005+0.026
−0.012 0.997 ± 0.005+0.019

−0.002

χ2/DoF 91/94 84/94
confidence level 57% 76%
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Fit Results Simplified τ -model

parameter two-jet three-jet

λ 0.61 ± 0.03+0.08
−0.26 0.84 ± 0.04+0.04

−0.37

α 0.44 ± 0.01+0.05
−0.02 0.42 ± 0.01+0.02

−0.04

R (fm) 0.78 ± 0.04+0.09
−0.16 0.98 ± 0.04+0.55

−0.14

ε (GeV−1) 0.005 ± 0.001± 0.003 0.008 ± 0.001± 0.005
γ 0.979 ± 0.002+0.009

−0.003 0.977 ± 0.001+0.013
−0.008

χ2/DoF 95/95 113/95
confidence level 49% 10%
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Fit Results Full τ -model for 2-jet events
mt regions (GeV) average confidence
mt1 mt2 mt (GeV) level λ

Q < 0.4 all (%)

0.14 – 0.26 0.14 – 0.22 0.19 0.19 10 0.39± 0.02
0.14 – 0.34 0.22 – 0.30 0.27 0.27 48 0.76± 0.03
0.14 – 0.46 0.30 – 0.42 0.37 0.37 74 0.83± 0.03
0.14 – 0.66 0.42 – 4.14 0.52 0.52 13 0.97± 0.04
0.26 – 0.42 0.14 – 0.22 0.25 0.26 22 0.53± 0.02
0.34 – 0.46 0.22 – 0.30 0.32 0.33 33 0.80± 0.03
0.46 – 0.58 0.30 – 0.42 0.43 0.44 34 0.91± 0.04
0.66 – 0.86 0.42 – 4.14 0.65 0.65 66 1.01± 0.05
0.42 – 0.62 0.14 – 0.22 0.34 0.34 17 0.41± 0.03
0.46 – 0.70 0.22 – 0.30 0.41 0.41 55 0.64± 0.03
0.58 – 0.82 0.30 – 0.42 0.52 0.52 59 0.70± 0.04
0.86 – 1.22 0.42 – 4.14 0.80 0.81 24 0.66± 0.05
0.70 – 4.14 0.22 – 0.30 0.59 0.65 4 0.37± 0.04
0.82 – 4.14 0.30 – 0.42 0.71 0.76 11 0.56± 0.05
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Fit Result R2(Q, mt1, mt2)

parameter

λ 0.58 ± 0.03+0.08
−0.24

α 0.47 ± 0.01+0.04
−0.02

∆τ (fm) 1.56 ± 0.12+0.32
−0.45

ε (GeV−1) 0.001 ± 0.001± 0.003
γ 0.988 ± 0.002+0.006

−0.002

χ2/DoF 90/95
confidence level 62%
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R2 = γ · [1 + λG] · (1 + εQ)

• Gaussian
G = exp

(
−(rQ)2)

• Edgeworth expansion
G = exp

(
−(rQ)2)

·
[
1 + κ

3!H3(rQ)
]

Gaussian if κ = 0
κ = 0.71± 0.06

• symmetric Lévy
G = exp (−|rQ|α)

0 < α ≤ 2
α = 1.34± 0.04 Gauss Edgew Lévy

CL: 10−15 10−5 10−8

Poor χ2. Edgeworth and Lévy better than Gaussian, but poor.
Problem is the dip of R2 in the region 0.6 < Q < 1.5 GeV



R2 = γ · [1 + λG] · (1 + εQ)

• Gaussian
G = exp

(
−(rQ)2)

• Edgeworth expansion
G = exp

(
−(rQ)2)

·
[
1 + κ

3!H3(rQ)
]

Gaussian if κ = 0
κ = 0.71± 0.06

• symmetric Lévy
G = exp (−|rQ|α)

0 < α ≤ 2
α = 1.34± 0.04 Gauss Edgew Lévy

CL: 10−15 10−5 10−8

Poor χ2. Edgeworth and Lévy better than Gaussian, but poor.
Problem is the dip of R2 in the region 0.6 < Q < 1.5 GeV
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Ra free
χ2/dof = 91/94

R2α
a = tan

(
απ
2

)
R2α

χ2/dof = 95/95
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Ra free
χ2/dof = 91/94

R2α
a = tan

(
απ
2

)
R2α
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Ra free
χ2/dof = 84/94

R2α
a = tan

(
απ
2

)
R2α

χ2/dof = 113/95
CL = 10%

R-summary

p. 43
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Ra free
χ2/dof = 84/94

R2α
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2
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Ra free
χ2/dof = 84/94

R2α
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2
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CL = 10%
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Ra free
χ2/dof = 84/94

R2α
a = tan

(
απ
2

)
R2α

χ2/dof = 113/95
CL = 10%

R-summary

p. 43



R2(Q, mt1, mt2) = γ
{

1 + λ cos
[

τ0Q2(mt1+mt2)
2(mt1mt2)

+ tan
(

απ
2

) (
∆τQ2

2

)α mα
t1 +mα

t2
2(mt1mt2)α

]
·exp

[
−

(
∆τQ2

2

)α mα
t1 +mα

t2
2(mt1mt2)α

]}
· (1 + εQ)

• Fit R2(Q) using
avg mt1, mt2 in each Q
bin, mt1 > mt2

• τ0 = 0.00± 0.02
so fix to 0

• χ2/dof = 90/95 fit



Q Dependence

R2(QL, Qside, qout) vs.
QL for Qside,qout< 0.08 GeV

Qside for QL,qout< 0.08 GeV
qout for QL,Qside< 0.08 GeV

Dependence on components of
Q is preferred.
rout > RL > Rside
Not azimuthally symmetric

elong
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