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Proton modification in pA

Due to broadening the nuclear
target probes the parton dis-
tribution In the beam hadron
with a higher resolution, sog™
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x. This Is a higher twist effect. 10 10 1

UNIVERSIDAD TECNICA

FEDERICO SANTA MAR

1A



Proton modification in pA

There is an asymmetry in the properties of colliding nucseion
pA collisions: their PDFs correspond to different scales

® The PDF of the beam proton is modified to a state with a
higher scale@? + Q? ,, and higher gluon density at smail
than inIN N collisions,
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while the PDFs of the target bound nucleons remain unchanged
and are controlled by the scalg?.
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Mutual broadening in AA

In nuclear collisions the PDFs of bound nucleons in bothaiucl
are drifting towards higher scales.

@ —> ‘
=&

This in turn enhances broadening compareg Ay since the
properties of the target nucleons change.

0,,63) > 0, ()

Therefore, broadening, i.e. the saturation momentumeas®s
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Mutual boosting of saturation scales

t-channel gluons in the rest frame of the nuclé2isbecome
s-channel gluons propagating through the nucldus its rest
frame. So even gluonic exchanges experience broadening and
participate in the boosting of the saturations scales.
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Reciprocity of saturation scales

As far as the properties of bound nucleons in nuclear cofisi
are modified compared & IN collision, the saturations scales
In the colliding nuclei should be revised. The usual relzditor
the gluon saturation scal€®? , (Q%5) in pA(pB) collisions,

In the case of collision of two nucled and B are replaced by
the system of reciprocity equations,

3 2
QEB(wB) — i OKS(Q sA + Qo) ngN(wBa Q sA + Qo) TB

3
QgA(mA) % as(QSB _l_ QO) wAgN(wAa sB _I_ QO) TA

wherex 4 g are the fractional light-cone momenta of the
radiated gluon relative to the colliding nucleisxzg = k?r/s;

. Q2 = 1.7 GeV’ is chosen to get the right infra-red behavior.
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Saturation scale in AA vs pA

For central collisiong'sa = Tg L e A SRR
the equations are easy to solve: . f  MHC L
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Boosted gluons inJ /¥ production

The boosted gluon density at  The shift of@?2, i.e. of the mean
smallz in the colliding nuclei transverse momentum, enhances
make the nuclear matter more  the Cronin effect fot7 /.
opaques for color dipoles.

IS| effects
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Other observables

The boosted "cold" nuclear
medium in AA collisions, also

increases/ /W broadening. This

IS an example of a "cold" nuclear
medium, which is rather "hot".
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The saturation scale also
controls the multiplicity
dn/dn o QI/as(Q?).

The boosting@Q? > Q2, should
lead to anismatchof multiplici-
ties inpA and A A collisions.
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@ Multiple interactions inpA collisions significantly modify
the gluon PDF in the projectile proton, enhancing small, but
suppressing large. However, the PDFs of the target nucleons
remain unchanged.
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@ Multiple interactions inpA collisions significantly modify
the gluon PDF in the projectile proton, enhancing small, but
suppressing large. However, the PDFs of the target nucleons
remain unchanged.

® The "cold" nuclear medium it A collisions is not really
cold. The PDFs in both nuclei are affected by multiple
Interactions. Their saturation scales are boosted up tedles
significantly higher than im A collisions.
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® The "cold" nuclear medium it A collisions is not really
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® The nuclear medium il A is more opaque for color dipoles
(J /W) than inp A collisions. No simple extrapolation from
J /W suppression ip A to the ISI effects inA A is possible.
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@ Multiple interactions inpA collisions significantly modify
the gluon PDF in the projectile proton, enhancing small, but
suppressing large. However, the PDFs of the target nucleons
remain unchanged.

® The "cold" nuclear medium it A collisions is not really
cold. The PDFs in both nuclei are affected by multiple
Interactions. Their saturation scales are boosted up tedles
significantly higher than im A collisions.

® The nuclear medium il A is more opaque for color dipoles
(J /W) than inp A collisions. No simple extrapolation from
J /W suppression ip A to the ISI effects inA A is possible.

® Measurement opr-broadening of7 /¥ in pA and A A
collisions would be a straightforward test of the boostifigct.
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LP principle and saturation

Lorentz contruction does not affect parton
clouds of bound nucleons at smalin the
nuclear infinite momentum frame, so they
overlap in longitudinal direction.

[O. Kancheli, 1973]

This leads to a dense packing of radiated gluons in the phase
space. However, according to the LP principlelLandau &
l.Pomeranchuk, 1953nultiple interactions do not generate
multiple radiation of identical gluons, if the coherenaadi of
radiation is largel. > R 4. So the amount of gluon radiation
should saturate at smail
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The density of radiated gluons is maximal at snkgll where it
saturates, but it is getting dilute above the saturatiokesca

wy kr R Qa, where the Bethe-Heitler regime takes over.

e = a
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Measuring the saturation scale

The partial dipole-nucleus amplitude at impact parameteads,
f:gp(b) =1 — e_%o'gz\gp(rT,E) Ta(db) _ 1 — e—%rr_zr Q2 (b,E)

Calculation of@? from the first principles looks pretty hopeless,
but one can get it from phenomenology.

A parton propagating through a nucleus .

experiences broadening, which turns out |

to be exactly the saturation scale 20 T
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C(E) — —Vzadz-p © 10 F

2 r7=0 [

Dolejsi, Hufner, B.K. (1993) 5 |

BDMPS (1997) [
Johnson, B.K., Tarasov (2000) T
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Gluon shadowing

So far broadening was calculated in the LO approximation.
However, gluon radiation from different sources interfere
resulting in a suppression of broadenigdun shadowinp

o (k?)
fo2

C,(E,b) = g/dzk F(x, k?)SA(E, k%, b)
F (x, k?) is the unintegrated gluon density.
Sa(xz, k?,b) is the LPM suppression factor, which is known at
k? < Q%4,0rk? > Q%
SA(E, k2, b) =1 — —=°tf Ta(®) o~k /Q2A(ED)
1+ oepTa(b)

o.rs = ;C(E) 2 is the cross section for a glue-glue dipole.
The sizery = 0.3 fm is dictated bypp — pX diffraction data.
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Self-guenching of shadowing

With this form of the LP suppression factor we arrive at the
equation forR,(E,b) = C(E,b)/C(E,b)

2,2
Rg Ny Neyf 20

R,=1— :
7 (1 —|— Rg n0)2(1 —|— ’I’Leff) 12
14 ¢ C4a,fl
Neff(E,b) = ocpr(E) Ta(b) _ 12 |
no(E,b) = 2 o¢(E) Ta(b) =10 |

Since gluon shadowing occurs due to
multiple rescatterings of the radiated glu-
ons, which is reduced by gluon shadow-

ing, gluon shadowing is quenching itself. 10° 100 10" 107
E (GeV)
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Gluon shadowing

TheT 4-dependence of the saturation momentum
saturates and levels off at lar@,.
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