

Searches for Light New Physics with BABAR

Hervé Choi Presenting on behalf of the BABAR collaboration

University of Victoria Victoria, British Columbia, Canada

ISMD2011, Hiroshima, Japan

(日) (同) (日) (日) (日)

Outline

- 1. Motivation
- 2. PEP-II and BABAR experiment
- 3. Previous results
 - Searches for $A^0 \rightarrow \tau^+ \tau^-$
 - Searches for $A^0 \rightarrow \mu^+ \mu^-$
- 4. Hadronic decays of a light Higgs boson in $\Upsilon(nS) \rightarrow \gamma A^0$
 - Selection strategy
 - Results
 - Systematic uncertainties
 - A⁰ signal and significance
- 5. Summary

Sac

Motivation

► A light Higgs A⁰ (< 2M_B) is predicted for extensions of SM such as the nMSSM (Phys. Rev. Lett. **95**, 041801 [2005])

• $\Upsilon(nS) \rightarrow \gamma A^0$ is allowed

- Branching fractions can be significant depending on the model parameters
 - $B(A^0 \rightarrow f\bar{f}) \propto m_f^2/tan^2\beta$ for up-type fermions
 - $B(A^0 \to f\bar{f}) \propto m_f^2 tan^2 \beta$ for down-type fermions

Introduction

BABAR

Branching Fractions of $\Upsilon \rightarrow \gamma A^0$ for nMSSM

 $^{\circ} \rightarrow hadrons$

Analysis

(日) (四) (三) (三) (三)

Sac

Conclusion

PEP-II and the BABAR Experiment

BABAR

Samples at BABAR

Data collected:

- ► 465 M BB pairs at Y(4S) from 1999–2007
- 27.9 fb⁻¹ at $\Upsilon(3S) \Rightarrow$ 121 M events

< □ > < 同 > < 三</p>

► 13.6 fb⁻¹ at $\Upsilon(2S) \Rightarrow 98$ M events

 $\exists \rightarrow$

BABAR

Search for $A^0 \rightarrow \tau^+ \tau^-$ in $\Upsilon(3S)$ Data

BABAR collaboration, Phys. Rev. Lett. 103, 181801 (2009)

BABAR collaboration, Phys. Rev. Lett. **103**, 081803 (2009). J/ψ and $\Upsilon(2S)$ resonances (shaded areas) are excluded from the search.

Search for hadronic decays of the A^0

 $A^0 \to {\rm hadrons}$ can be the dominant decay mode depending on the mass of A^0 and $tan\beta$

Event Reconstruction Strategy for $A^0 \rightarrow$ hadrons Study

The event is reconstructed in the following manner:

- 1. Highest energy photon is the radiative photon of the decay
- 2. Four-momenta of the remaining particles are added to reconstruct the A^0 :
 - 2.1 $K_s^0 \to \pi^+ \pi^-$, where $m_{K_s^0}$ is within a K_s^0 mass window 2.2 proton, K^{\pm} , π^{\pm} mass assigned using charged hadron ID 2.3 $\pi^0 \to \gamma\gamma$, where m_{π^0} is within a π^0 mass window and π^0 satisfies an energy cut
 - 2.4 any leftover γ

Event Selection Criteria

Event selection criteria are as follows:

- ► Radiative photon energy E_γ > 2.5 GeV for Υ(3S) and E_γ > 2.2 GeV for Υ(2S)
- At least two charged tracks for the A⁰ decay
- The radiative photon and all A⁰ decay products must come from a common vertex
- Event rejected if the radiative photon can be combined with any other γ in the event to give a π^0 or an η meson
- $\blacktriangleright~e^+e^- \to \gamma~e^+e^-$ or $e^+e^- \to \gamma~\mu^+\mu^-$ events are rejected

The analysis takes two parallel paths:

- ▶ CP-all: no assumptions on the CP nature of the A⁰
- ▶ *CP*-odd: A^0 is assumed to be *CP*-odd \Rightarrow no $A^0 \rightarrow \pi^+\pi^-$ or $A^0 \rightarrow K^+K^-$

Backgrounds

Main backgrounds include:

- ► continuum: ISR production of resonances $(e^+e^- \rightarrow \gamma M)$ or non-resonant modes $(e^+e^- \rightarrow \gamma X)$
- Υ radiative decay
- \blacktriangleright A γ from π^0 decay at high A^0 mass can fake the radiative photon

 $\Upsilon(4S)$ and offpeak data are used as continuum sample

• $B\overline{B}$ events do not pass selection

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○○○

Introduction BABAR Previous Results $A^0 \rightarrow$ hadrons Analysis Results Conclusions

Candidate Mass Spectrum

Candidate mass spectrum for (a) *CP*-all (371,740 events) and (b) *CP*-odd (171,136 events) overlaid with background fit and scaled continuum data

Sac

A^0 Signal Determination

- The number of A⁰ signal in a particular mass window centered at m_i is the number of events minus the background
- Background events consist of:
 - Continuum component scaled with a normalization factor
 - ► Five light resonances as observed by CLEO in the study of $\Upsilon(1S) \rightarrow \gamma h^+ h^-$: $f_0(980)$, $f_2(1270)$, $f_2'(1525)$, $f_0(1710)$ and $f_4(2050)$ (Phys. Rev. D **73**, 032001 (2006))
 - Non-resonant $\Upsilon(nS) \rightarrow \gamma X$ decays
- ► A⁰ significance is defined to be the number of events divided by the uncertainties; it is plotted in candidate mass bins

▲□▶ ▲御▶ ★臣▶ ★臣▶ 二臣

Introduction

Previous Re

 $A^{\cup} \rightarrow ha$

Analy

Results C

Conclusions

A⁰ Signal Significance

BABAR

Results A⁰ Signal Significance (cont'd) Entries per 0. (a) (b) 10² 10^{2} 10 10E -5 5 5 0 -5 A⁰ significance

BABAR

Histogram for statistical significances for (a) CP-all and (b) CP-odd. Red line is predicted by toy MC for no signal.

Systematic Errors

- Uncertainty of efficiency mainly comes from A⁰ decay modes
 - ► A⁰ can decay into ss, cc and gg in this study. Uncertainty is estimated by varying the fractions of the final decay modes.
- Uncertainties in backgrounds are obtained by:
 - comparing fixed/ floating continuum scaling factor
 - including/ omitting light resonances in the fit

・ロト ・ 同ト ・ ヨト ・ ヨト

Significance and Upper Limits

► Candidate mass at which the most significant "signal" occurs:

 $\begin{array}{c} \label{eq:cP-all:} CP\text{-all:} & 3.5\sigma \text{ at } 3.107 \ \mathrm{GeV}/c^2 \ (\text{stat. only}) \\ & 2.9\sigma \text{ at } 1.295 \ \mathrm{GeV}/c^2 \ (\text{stat. + syst.}) \end{array}$

• Can also calculate 90% C.L. upper limits on $B[\Upsilon(3S) \rightarrow \gamma A^0] \cdot B(A^0 \rightarrow hadrons)$ and $B[\Upsilon(2S) \rightarrow \gamma A^0] \cdot B(A^0 \rightarrow hadrons)$ assuming that the same matrix element describes both $\Upsilon(3S)$ and $\Upsilon(2S)$ decays

▲□▶ ▲□▶ ★□▶ ★□▶ ▲□▶ ▲□

Introduction

Previous I

BABAR

Results

 $A^0 \rightarrow hadrons$

Results

Upper Limits vs. A^0 Hypothesis Mass

Upper limits of $B[\Upsilon(nS) \rightarrow \gamma A^0] \cdot B(A^0 \rightarrow hadrons)$ as a function of A^0 hypothesis mass in the (a) *CP*-all and (b) *CP*-odd, overlaid with predictions from simulated experiments and limits from statistical errors only.

Conclusions

- ► BABAR has performed searches for light Higgs with data collected at the *Y*(3*S*) and *Y*(2*S*) resonances
- No observations of the light Higgs have been made at the searches
- ▶ 90% CL upper limits on the product branching fraction B($\Upsilon(nS) \rightarrow \gamma A^0$)·B($A^0 \rightarrow$ hadrons) are from 1×10^{-6} at 0.3 GeV/ c^2 to 8 × 10⁻⁵ at 7 GeV/ c^2

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

Papers

- ► "Probing next-to-minimal-supersymmetric models with minimal fine tuning by searching for decays of the *Y* to a light *CP*-odd Higgs boson", Phys. Rev. D **76**, 051105(R) (2007)
- "Search for a low-mass Higgs boson in $\Upsilon(3S) \rightarrow \gamma A^0$, $A^0 \rightarrow \tau^+ \tau^-$ at *BABAR*", Phys. Rev. Lett. **103**, 181801 (2009)
- ▶ "Search for dimuon decays of a light scalar boson in radiative transitions $\Upsilon \rightarrow \gamma A^{0"}$, Phys. Rev. Lett. **103**, 081803 (2009)
- ► "Search for hadronic decays of a light Higgs boson in radiative decays \$\mathcal{Y} → \gamma A^0\$". To be submitted to Phys. Rev. Lett.