Nuclei and SRCs

DIS and nuclear PDFs 00000000 Nuclear PDFs from SRCs

Conclusion and Outlook

Modification of nPDFs by correlated nucleon pairs

Michael Klasen

ITP, University of Münster

CERN TH Heavy Ion Coffee, January 27, 2025

A. Denniston, T. Jezo, A. Kusina et al., Phys. Rev. Lett. 133 (2024) 15

Bundesministerium für Bildung und Forschung

Nuclei and SRCs

DIS and nuclear PDFs 00000000 Nuclear PDFs from SRCs

Conclusion and Outlook 00

Introduction

Short-range nucleon dynamics is fundamental:

- Deficiencies of mean-field model
- Change of nucleon structure in nuclei (EMC effect)
- Related to quark and gluon d.o.f. in nuclei (?)
- Properties of matter under extreme conditions

Nuclei and SRCs

DIS and nuclear PDFs 00000000 Nuclear PDFs from SRCs

Conclusion and Outlook 00

Introduction

Short-range nucleon dynamics is fundamental:

- Deficiencies of mean-field model
- Change of nucleon structure in nuclei (EMC effect)
- Related to quark and gluon d.o.f. in nuclei (?)
- Properties of matter under extreme conditions

Short-range nucleon dynamics is challenging:

- Complex nuclear many-body problem
- Nucleons are again many-body systems

Nuclei and SRCs

DIS and nuclear PDFs 00000000 Nuclear PDFs from SRCs

Conclusion and Outlook 00

Introduction

Short-range nucleon dynamics is fundamental:

- Deficiencies of mean-field model
- Change of nucleon structure in nuclei (EMC effect)
- Related to quark and gluon d.o.f. in nuclei (?)
- Properties of matter under extreme conditions

Short-range nucleon dynamics is challenging:

- Complex nuclear many-body problem
- Nucleons are again many-body systems

Goal of this work:

- New nPDF ansatz: Single N in mean field + SRC NN pairs
- nCTEQ analysis of DIS, DY, W/Z-boson data at high energy
- Extract SRC fractions and properties of SRC pairs

Nuclei and SRCs

DIS and nuclear PDFs

Nuclear PDFs from SRCs

Conclusion and Outlook

Nuclei and short-range correlations

© Jefferson Lab

Nuclei and SRCs

DIS and nuclear PDFs 00000000 Nuclear PDFs from SRCs

Conclusion and Outlook

The nuclear many-body problem (1)

C. Ciofi degli Atti, Phys. Rep. 590 (2015) 1

Non-relativistic Schrödinger equation (even though $\frac{v_N}{c} \sim 0.1$):

$$\left[\sum_{i} \frac{p_{i}^{2}}{2m_{N}} + \sum_{i < j} v_{2}(x_{i}, x_{j}) + \sum_{i < j < k} v_{3}(x_{i}, x_{j}, x_{k})\right] \psi_{A}^{f}(\{x_{A}\}) = E_{A}^{f} \psi_{A}^{f}(\{x_{A}\})$$

•
$$V_2$$
 dominates, $V_n\simeq (rac{v_N}{c})^{n-2}V_2$ [H. Primakoff, T. Holstein, PR 55 (1939) 1218]

- V_3 contributes ≤ 20 % to BE
- [S.C. Pieper, R.B. Wiringa, ARNPS 51 (2001) 53]

Nuclear PDFs from SRCs

Conclusion and Outlook

The nuclear many-body problem (1)

C. Ciofi degli Atti, Phys. Rep. 590 (2015) 1

Non-relativistic Schrödinger equation (even though $\frac{v_N}{c} \sim 0.1$):

$$\left[\sum_{i} \frac{p_i^2}{2m_N} + \sum_{i < j} v_2(x_i, x_j) + \sum_{i < j < k} v_3(x_i, x_j, x_k)\right] \psi_A^f(\{x_A\}) = E_A^f \psi_A^f(\{x_A\})$$

•
$$V_2$$
 dominates, $V_n\simeq (rac{v_N}{c})^{n-2}V_2$ [H. Primakoff, T. Holstein, PR 55 (1939) 1218]

• V_3 contributes \leq 20 % to BE [S.C. Pieper, R.B. Wiringa, ARNPS 51 (2001) 53]

Nuclear NN potentials:

[R.J. Furnstahl, K. Ebeler, Rep. Progr. Phys. 76 (2013) 126301]

- Depend on L, S, T (L + S + T odd, Pauli)
- Attractive (${}^{1}S_{0}$, spin-aligned) for $r \ge 0.7$ fm $_{s}$
- Tensor character for S = 1
- Repulsive at small $r \rightarrow$ pert. theory fails
- Off-shell effects, important at small r

Nuclear PDFs from SRCs

Conclusion and Outlook

The nuclear many-body problem (2)

C. Ciofi degli Atti, Phys. Rep. 590 (2015) 1

Chiral perturbation theory: [H.W. Hammer, A. Nogga, A. Schwenk, RMP 85 (2013) 197]

- EFT based on approx., spont. broken chiral symmetry of QCD
- Systematic expansion in local operators and powers of $\Lambda \simeq m_
 ho$
- Short range contact int., long range pion exchange $(p_N \simeq m_\pi)$
- Also repulsive at small r, solvable up to $A \le 12$ with RGEs

• Off-shell NN interactions \leftrightarrow On-shell 3N forces

Nuclear PDFs from SRCs

Conclusion and Outlook

The nuclear many-body problem (3)

C. Ciofi degli Atti, Phys. Rep. 590 (2015) 1

Nuclear shell model:

Independent Particle Model:
 [Jensen et al. PR 75 (1949) 1766; Mayer idib. 1969]

$$\left[-\frac{\hbar^2}{2m_N}\nabla_i^2+U(\mathsf{x}_i)\right]\phi_\alpha(\mathsf{x}_i)=\epsilon_\alpha\phi_\alpha(\mathsf{x}_i)$$

with isotropic mean field $U(r_i) = \frac{1}{2}\hbar\omega r_i^2 + DL_i^2 + CLS$. Generated by $V_2 \rightarrow$ Reproduces magic numbers in Z and N

- Motivates "bound" nucleon PDFs
- V_3 modifies monopole, explains e.g. N = 28 in 20 Ca

Nuclear PDFs from SRCs

Conclusion and Outlook

The nuclear many-body problem (3)

C. Ciofi degli Atti, Phys. Rep. 590 (2015) 1

Nuclear shell model:

Independent Particle Model:
 [Jensen et al. PR 75 (1949) 1766; Mayer idib. 1969]

$$\left[-\frac{\hbar^2}{2m_N}\nabla_i^2+U(\mathsf{x}_i)\right]\phi_\alpha(\mathsf{x}_i)=\epsilon_\alpha\phi_\alpha(\mathsf{x}_i)$$

with isotropic mean field $U(r_i) = \frac{1}{2}\hbar\omega r_i^2 + DL_i^2 + CLS$. Generated by $V_2 \rightarrow$ Reproduces magic numbers in Z and N

- Motivates "bound" nucleon PDFs
- V_3 modifies monopole, explains e.g. N = 28 in ²⁰Ca

Modern approaches:

- No-Core Shell Model: [B.R. Barrett, P. Navratil J.P. Vary, PPNP 69 (2013) 131] Variational many-body ansatz ($A \le 12$), also used with ChPT
- Quantum Monte Carlo: [R. Cruz-Torres et al., Nature Phys. 17 (2021) 306] Scale separation of short and long distances \rightarrow A-dependent SRC fractions, A-independent contact terms

Nuclei and SRCs

DIS and nuclear PDFs

Nuclear PDFs from SRCs

Conclusion and Outlook

Short-range correlations

O. Hen et al., Rev. Mod. Phys. 89 (2017) 045002 [1611.09768]

Experimental and theoretical evidence:

• QE data show only 65% of single-N strength predicted by IPM

L. Lapikas, Nuclear Physics A 553 (1993) 297c

M. Alvioli et al., PRC 87 (2013) 034603 [1211.0134]

- Remainder in SRC pairs (small p^* , but $p_{
 m rel.} > p_F \sim 250$ MeV)
- Dominated by nodeless rel. S-wave with S = 1, T = 0 (\sim d)
- Typical distance $\sim 1 \; \text{fm} < \text{average } 1.7 \; \text{fm} \rightarrow \text{Higher density}$

Nuclei and SRCs

DIS and nuclear PDFs

Nuclear PDFs from SRCs

Conclusion and Outlook

Exclusive quasi-elastic scattering

R. Subedi et al. (Hall A), Science 320 (2008) 1476 [0908.1514]

 12 C(e, e'p, pN) ($E_e = 4.627$ GeV, $\theta_e = 19.5^{\circ}$):

Nuclei and SRCs

DIS and nuclear PDFs 00000000 Nuclear PDFs from SRCs

Conclusion and Outlook

Inclusive quasi-elastic scattering

N. Fomin et al. (Hall C), Phys. Rev. Lett. 108 (2012) 092502 [1107.3583]

Ratio $a_2 = \text{const.}$ for x > 1.5 ($E_e = 5.766$ GeV, $\theta_e = 18^\circ$):

Nuclei and SRCs

DIS and nuclear PDFs 00000000 Nuclear PDFs from SRCs

Conclusion and Outlook

Inclusive deep-inelastic scattering

I. Schienbein et al. [nCTEQ], PRD 80 (2009) 094004 [0907.2357]; D.M. Alde et al., PRL 64 (1990) 2479

Nuclear modification of $F_2^A(x, Q^2)$ ($E_e = 4.5...280$ GeV):

Explanation with N's only violates baryon/momentum sum rules \rightarrow Need also π 's, but no \bar{q} enhancement seen in nuclear DY. Partonic? Fewer high-momentum quarks \rightarrow larger size (e.g. NN^*).

Nuclei and SRCs

DIS and nuclear PDFs

Nuclear PDFs from SRCs

Conclusion and Outlook

SRCs and the EMC effect

O. Hen, E. Piasetzky, L.B. Weinstein et al., PRL 106 (2011) 052301 and PRC 85 (2012) 047301 [1202.3452]

EMC slope in $0.35 \le x \le 0.7$ vs. ratio $a_2 = \sigma_A / \sigma_d$ for x > 1.5:

Correlation suggests that EMC effect is of short-distance nature.

Nuclei and SRCs

DIS and nuclear PDFs •••••• Nuclear PDFs from SRCs

Conclusion and Outlook

Deep-inelastic scattering and nuclear PDFs

© Brookhaven National Laboratory

Nuclei and SRCs

DIS and nuclear PDFs 0000000 Nuclear PDFs from SRCs

Conclusion and Outlook

Theoretical foundations

MK, H. Paukkunen, Ann. Rev. Nucl. Part. Sci. 74 (2024) 49 [2311.00450] Deep-inelastic scattering (NC, CC, dimuon production):

Nuclei and SRCs

DIS and nuclear PDFs 0000000

Nuclear PDFs from SRCs

Conclusion and Outlook

Theoretical foundations

MK, H. Paukkunen, Ann. Rev. Nucl. Part. Sci. 74 (2024) 49 [2311.00450] Deep-inelastic scattering (NC, CC, dimuon production):

Hadronic collisions: Leading twist, higher-twist [J.w. Qiu, 0305161]

• Transv. size, jet mass, rescattering: $\mathcal{O}\left(r_T^2 \sim \frac{1}{p_\tau^2}, \frac{m_J^2}{p_\tau^2}, \frac{\alpha_s(Q^2)\Lambda^2}{Q^2}\right)$

Enhanced in nuclear collisions by A^{1/3} due to many soft partons

Nuclei and SRCs

DIS and nuclear PDFs 0000000 Nuclear PDFs from SRCs

Conclusion and Outlook

(Perturbative) Quantum Chromodynamics

MK, H. Paukkunen, Ann. Rev. Nucl. Part. Sci. 74 (2024) 49 [2311.00450] Nuclear structure function(s) in deep-inelastic scattering (DIS):

$$F_2^A(x, Q^2) = \sum_i f_i^{(A,Z)}(x, Q^2) \otimes C_{2,i}(x, Q^2)$$

QCD factorization theorem, Wilson coefficients $C_{2,i}$ at (N)NLO

Nuclei and SRCs

DIS and nuclear PDFs 0000000 Nuclear PDFs from SRCs

Conclusion and Outlook

(Perturbative) Quantum Chromodynamics

MK, H. Paukkunen, Ann. Rev. Nucl. Part. Sci. 74 (2024) 49 [2311.00450] Nuclear structure function(s) in deep-inelastic scattering (DIS):

$$F_2^A(x, Q^2) = \sum_i f_i^{(A,Z)}(x, Q^2) \otimes C_{2,i}(x, Q^2)$$

QCD factorization theorem, Wilson coefficients $C_{2,i}$ at (N)NLO Nuclear parton density functions (nPDFs):

$$f_i^{(A,Z)}(x,Q^2) = \frac{Z}{A} f_i^{p/A}(x,Q^2) + \frac{A-Z}{A} f_i^{n/A}(x,Q^2)$$

Nuclei and SRCs

DIS and nuclear PDFs 0000000 Nuclear PDFs from SRCs

Conclusion and Outlook

(Perturbative) Quantum Chromodynamics

MK, H. Paukkunen, Ann. Rev. Nucl. Part. Sci. 74 (2024) 49 [2311.00450] Nuclear structure function(s) in deep-inelastic scattering (DIS):

$$F_2^A(x, Q^2) = \sum_i f_i^{(A,Z)}(x, Q^2) \otimes C_{2,i}(x, Q^2)$$

QCD factorization theorem, Wilson coefficients $C_{2,i}$ at (N)NLO Nuclear parton density functions (nPDFs):

$$f_i^{(A,Z)}(x,Q^2) = \frac{Z}{A} f_i^{p/A}(x,Q^2) + \frac{A-Z}{A} f_i^{n/A}(x,Q^2)$$

DGLAP evolution equations:

$$\frac{\partial f_i(x, Q^2)}{\partial \log Q^2} = \int_x^1 \frac{dz}{z} P_{ij}\left(\frac{x}{z}, \alpha_s(Q^2)\right) f_j(z, Q^2)$$

Nuclei and SRCs

DIS and nuclear PDFs 0000000 Nuclear PDFs from SRCs

Conclusion and Outlook

(Perturbative) Quantum Chromodynamics

MK, H. Paukkunen, Ann. Rev. Nucl. Part. Sci. 74 (2024) 49 [2311.00450] Nuclear structure function(s) in deep-inelastic scattering (DIS):

$$F_2^A(x, Q^2) = \sum_i f_i^{(A,Z)}(x, Q^2) \otimes C_{2,i}(x, Q^2)$$

QCD factorization theorem, Wilson coefficients $C_{2,i}$ at (N)NLO Nuclear parton density functions (nPDFs):

$$f_i^{(A,Z)}(x,Q^2) = \frac{Z}{A} f_i^{p/A}(x,Q^2) + \frac{A-Z}{A} f_i^{n/A}(x,Q^2)$$

DGLAP evolution equations:

$$\frac{\partial f_i(x, Q^2)}{\partial \log Q^2} = \int_x^1 \frac{dz}{z} P_{ij}\left(\frac{x}{z}, \alpha_s(Q^2)\right) f_j(z, Q^2)$$

Number and momentum sum rules, but also isospin symmetry:

$$\int_0^1 dx [f_{\{u,d\}}^{p/A} - f_{\{\bar{u},\bar{d}\}}^{p/A}(x)] = \{2,1\} \quad ; \quad f_{d,u}^{n/A}(x,Q^2) = f_{u,d}^{p/A}(x,Q^2)$$

Nuclei and SRCs

DIS and nuclear PDFs 0000000

Nuclear PDFs from SRCs

Conclusion and Outlook

High-x JLab data: Deuteron, TMCs and HT

A. Accardi et al., Phys. Rev. D 93 (2016) 114017 [1602.03154]; E.P. Segarra et al., Phys. Rev. D 103 (2021) 114015 [2012.11566]

tion Nuclei and SRCs DIS a

DIS and nuclear PDFs 0000000

Nuclear PDFs from SRCs

Conclusion and Outlook

High-x JLab data: Deuteron, TMCs and HT

A. Accardi et al., Phys. Rev. D 93 (2016) 114017 [1602.03154]; E.P. Segarra et al., Phys. Rev. D 103 (2021) 114015 [2012.11566]

Deuteron:

- Loosely bound \rightarrow often isoscalar (*pn*) assumed, fitted with *p*
- Fermi motion, nucl. binding, off-shell effects (few %) [CJ15,CJ22]

tion Nuclei and SRCs DIS and

DIS and nuclear PDFs 0000000 Nuclear PDFs from SRCs

Conclusion and Outlook

High-x JLab data: Deuteron, TMCs and HT

A. Accardi et al., Phys. Rev. D 93 (2016) 114017 [1602.03154]; E.P. Segarra et al., Phys. Rev. D 103 (2021) 114015 [2012.11566]

Deuteron:

- Loosely bound \rightarrow often isoscalar (*pn*) assumed, fitted with *p*
- Fermi motion, nucl. binding, off-shell effects (few %) [CJ15,CJ22] Target mass corrections (TMCs):
 - Nachtmann: $\xi_N = 2x_N/(1 + r_N)$ with $r_N = \sqrt{1 + 4x_N^2 M_N^2/Q^2}$

ion Nuclei and SRCs DIS and 00000000 0000000

DIS and nuclear PDFs 0000000 Nuclear PDFs from SRCs

Conclusion and Outlook

High-x JLab data: Deuteron, TMCs and HT

A. Accardi et al., Phys. Rev. D 93 (2016) 114017 [1602.03154]; E.P. Segarra et al., Phys. Rev. D 103 (2021) 114015 [2012.11566]

Deuteron:

• Loosely bound \rightarrow often isoscalar (*pn*) assumed, fitted with *p*

• Fermi motion, nucl. binding, off-shell effects (few %) [CJ15,CJ22] Target mass corrections (TMCs):

• Nachtmann: $\xi_N = 2x_N/(1 + r_N)$ with $r_N = \sqrt{1 + 4x_N^2 M_N^2/Q^2}$ Higher twist (HT) corrections: [CJ15,CJ22]

•
$$F_2^A(x,Q) \to F_2^A(x,Q) \left[1 + \frac{A^{1/3}h_0 x^{h_1}(1+h_2 x)}{Q^2} \right]$$

Nuclei and SRCs

DIS and nuclear PDFs

Nuclear PDFs from SRCs

Conclusion and Outlook

Experimental kinematic coverage in x and Q^2

MK, H. Paukkunen, Ann. Rev. Nucl. Part. Sci. 74 (2024) 49 [2311.00450]

Nuclei and SRCs

DIS and nuclear PDFs 00000000

Nuclear PDFs from SRCs

Conclusion and Outlook

Global analyses of nuclear PDFs

MK, H. Paukkunen, Ann. Rev. Nucl. Part. Sci. 74 (2024) 49 [2311.00450]

Analysis	nCTEQ15HQ	EPPS21	nNNPDF3.0	TUJU21	KSASG20
Theoretical input:					
Perturbative order	NLO	NLO	NLO	NNLO	NNLO
Heavy-quark scheme	$SACOT - \chi$	$SACOT - \chi$	FONLL	FONLL	FONLL
Data points	1484	2077	2188	2410	4353
Independent flavors	5	6	6	4	3
Free parameters	19	24	256	16	18
Error analysis	Hessian	Hessian	Monte Carlo	Hessian	Hessian
Tolerance	$\Delta \chi^2 = 35$	$\Delta \chi^2 = 33$	N/A	$\Delta \chi^2 = 50$	$\Delta \chi^2 = 20$
Proton PDF	\sim CTEQ6.1	CT18A	\sim NNPDF4.0	\sim HERAPDF2.0	CT18
Deuteron corrections	(√) ^{a,b}	√ ^c	\checkmark	\checkmark	\checkmark
Fixed-target data:					
SLAC/EMC/NMC NC DIS	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
– Cut on Q^2	4 GeV ²	1.69 GeV ²	3.5 GeV ²	3.5 GeV ²	1.2 GeV ²
– Cut on W^2	12.25 GeV ²	3.24 GeV ²	12.5 GeV ²	12.0 GeV ²	
JLab NC DIS	(√) ^a	\checkmark			\checkmark
CHORUS/CDHSW CC DIS	(√/-) ^b	√/-	√/-	$\sqrt{\sqrt{1}}$	$\sqrt{\sqrt{1}}$
NuTeV/CCFR 2μ CC DIS	$(\sqrt{})^b$		√/-		
pA DY	\checkmark	\checkmark	\checkmark		\checkmark
Collider data:					
Z bosons	\checkmark	\checkmark	\checkmark	\checkmark	
W^{\pm} bosons	\checkmark	\checkmark	\checkmark	\checkmark	
Light hadrons	\checkmark	√ ^d			
Jets		\checkmark	\checkmark		
Prompt photons			\checkmark		
Prompt D ⁰	\checkmark	\checkmark	√ ^e		
Quarkonia $(J/\psi, \psi', \Upsilon)$	\checkmark				

Nuclei and SRCs

DIS and nuclear PDFs

Nuclear PDFs from SRCs

Conclusion and Outlook

Nuclear PDFs after 10 years of LHC data

MK, H. Paukkunen, Ann. Rev. Nucl. Part. Sci. 74 (2024) 49 [2311.00450]

Top pair production in pPb with ATLAS (and CMS)

ATLAS Coll., JHEP 11 (2024) 101 [2405.05078]

19/33

Nuclei and SRCs

DIS and nuclear PDFs

Nuclear PDFs from SRCs

Conclusion and Outlook

Nuclear PDFs from short-range correlations

C Brookhaven National Laboratory

Nuclei and SRCs

DIS and nuclear PDFs 00000000 Nuclear PDFs from SRCs

Conclusion and Outlook

Experimental data

A. Denniston, T. Jezo, A. Kusina, MK et al., Phys. Rev. Lett. 133 (2024) 15 [2312.16293]

Inclusive FT (CERN, FNAL, SLAC) and collider (RHIC, LHC) exp.:

• Deep-inelastic scattering:

Kinematics:
$$Q^2\!=\!-(p_e-p_{e'})^2$$
, $y\!=\!1\!-\!E_{e'}/E_e$, $x\!=\!Q^2/(sy)$

$$d\sigma(eA \to e'X) = \frac{4\pi\alpha^2}{Q^4} \left[\frac{F_2^A(x, Q^2)}{Q^2} \left(\frac{y^2}{2} + 1 - y \right) - xy^2 F_L^A \right]$$

where $F_2^A(x, Q^2) = \sum_i f_i^A(x, Q^2) \otimes C_{2,i}(x, Q^2)$.

Introduc[.] 0 Nuclei and SRCs

DIS and nuclear PDFs

Nuclear PDFs from SRCs

Conclusion and Outlook

Experimental data

A. Denniston, T. Jezo, A. Kusina, MK et al., Phys. Rev. Lett. 133 (2024) 15 [2312.16293]

Inclusive FT (CERN, FNAL, SLAC) and collider (RHIC, LHC) exp.:

• Deep-inelastic scattering:

Kinematics: $Q^2 = -(p_e - p_{e'})^2$, $y = 1 - E_{e'}/E_e$, $x = Q^2/(sy)$

$$d\sigma(eA \to e'X) = \frac{4\pi\alpha^2}{Q^4} \left[\frac{F_2^A(x, Q^2)}{Q} \left(\frac{y^2}{2} + 1 - y \right) - xy^2 F_L^A \right]$$

where $F_2^A(x, Q^2) = \sum_i f_i^A(x, Q^2) \otimes C_{2,i}(x, Q^2)$.

• Vector-boson (Drell-Yan, W/Z) production:

 $d\sigma(pA \rightarrow VX) = \sum_{i,j} f_i^p \otimes f_j^A(x, Q^2) \otimes d\hat{\sigma}(ij \rightarrow VX)$

Introduc O Nuclei and SRCs

DIS and nuclear PDFs

Nuclear PDFs from SRCs

Conclusion and Outlook

Experimental data

A. Denniston, T. Jezo, A. Kusina, MK et al., Phys. Rev. Lett. 133 (2024) 15 [2312.16293]

Inclusive FT (CERN, FNAL, SLAC) and collider (RHIC, LHC) exp.:

• Deep-inelastic scattering:

Kinematics:
$$Q^2 = -(p_e - p_{e'})^2$$
, $y = 1 - E_{e'}/E_e$, $x = Q^2/(sy)$

$$d\sigma(eA \to e'X) = \frac{4\pi\alpha^2}{Q^4} \left[\frac{F_2^A(x, Q^2)}{Q^2} \left(\frac{y^2}{2} + 1 - y \right) - xy^2 F_L^A \right]$$

where $F_2^A(x, Q^2) = \sum_i f_i^A(x, Q^2) \otimes C_{2,i}(x, Q^2)$.

• Vector-boson (Drell-Yan, W/Z) production:

$$d\sigma(pA \to VX) = \sum_{i,j} f_i^p \otimes f_j^A(x, Q^2) \otimes d\hat{\sigma}(ij \to VX)$$

• Other pA processes (jets, photons, light/hadrons) ightarrow low x

Introduc O Nuclei and SRCs

DIS and nuclear PDFs

Nuclear PDFs from SRCs

Conclusion and Outlook

Experimental data

A. Denniston, T. Jezo, A. Kusina, MK et al., Phys. Rev. Lett. 133 (2024) 15 [2312.16293]

Inclusive FT (CERN, FNAL, SLAC) and collider (RHIC, LHC) exp.:

• Deep-inelastic scattering:

Kinematics: $Q^2 = -(p_e - p_{e'})^2$, $y = 1 - E_{e'}/E_e$, $x = Q^2/(sy)$

$$d\sigma(eA \to e'X) = \frac{4\pi\alpha^2}{Q^4} \left[\frac{F_2^A(x, Q^2)}{Q^2} \left(\frac{y^2}{2} + 1 - y \right) - xy^2 F_L^A \right]$$

where $F_2^A(x, Q^2) = \sum_i f_i^A(x, Q^2) \otimes C_{2,i}(x, Q^2)$.

• Vector-boson (Drell-Yan, W/Z) production:

$$d\sigma(pA \to VX) = \sum_{i,j} f_i^p \otimes f_j^A(x, Q^2) \otimes d\hat{\sigma}(ij \to VX)$$

• Other pA processes (jets, photons, light/hadrons) ightarrow low x

Kinematic cuts (must avoid NP region \rightarrow d, TMCs and HT):

• nCTEQ15 ; nCTEQ15SIH/HQ : Q > 2.0 GeV, W > 3.5 GeV

Introduct 0 Nuclei and SRCs

DIS and nuclear PDFs

Nuclear PDFs from SRCs

Conclusion and Outlook

Experimental data

A. Denniston, T. Jezo, A. Kusina, MK et al., Phys. Rev. Lett. 133 (2024) 15 [2312.16293]

Inclusive FT (CERN, FNAL, SLAC) and collider (RHIC, LHC) exp.:

• Deep-inelastic scattering:

Kinematics: $Q^2 = -(p_e - p_{e'})^2$, $y = 1 - E_{e'}/E_e$, $x = Q^2/(sy)$

$$d\sigma(eA \to e'X) = \frac{4\pi\alpha^2}{Q^4} \left[\frac{F_2^A(x, Q^2)}{Q^2} \left(\frac{y^2}{2} + 1 - y \right) - xy^2 F_L^A \right]$$

where $F_2^A(x, Q^2) = \sum_i f_i^A(x, Q^2) \otimes C_{2,i}(x, Q^2)$.

• Vector-boson (Drell-Yan, W/Z) production:

$$d\sigma(pA \to VX) = \sum_{i,j} f_i^p \otimes f_j^A(x, Q^2) \otimes d\hat{\sigma}(ij \to VX)$$

• Other pA processes (jets, photons, light/hadrons) ightarrow low x

Kinematic cuts (must avoid NP region \rightarrow d, TMCs and HT):

- nCTEQ15 ; nCTEQ15SIH/HQ : Q > 2.0 GeV, W > 3.5 GeV
- nCTEQ15HIX/SRC, nCTEQ25: Q > 1.3 GeV, W > 1.7 GeV

Nuclei and SRCs

DIS and nuclear PDFs

Nuclear PDFs from SRCs

Conclusion and Outlook

Traditional theoretical approach

E.P. Segarra, T. Jezo, MK et al., Phys. Rev. D 103 (2021) 114015 [2012.11566]

 Q^2 -dependence calculable to N³LO QCD [S. Moch et al., PLB 860 (2025) 139194]

Nuclear PDFs from SRCs

Conclusion and Outlook

Traditional theoretical approach

E.P. Segarra, T. Jezo, MK et al., Phys. Rev. D 103 (2021) 114015 [2012.11566]

 Q^2 -dependence calculable to N³LO QCD [S. Moch et al., PLB 860 (2025) 139194]

x-dependence at $Q_0 = 1.3$ GeV must be fitted to experiments.

Our traditional parameterisation (e.g. nCTEQ15HIX):

$$x f_i^{p/A}(x, Q_0) = c_0 x^{c_1} (1-x)^{c_2} e^{c_3 x} (1+e^{c_4} x)^{c_5}$$

where $c_k(A) = p_k + a_k(1 - A^{-b_k}), \ k = \{1, ..., 5\},\$ and $i = \{u_v, d_v, (\bar{u} + \bar{d}), (\bar{d}/\bar{u}), s, g\}, \ s = \bar{s} = \kappa(\bar{u} + \bar{d})/2, \ \kappa = 0.5.$ Reproduces free proton for $A \to 1$, open 19 free parameters.

Nuclear PDFs from SRCs

Conclusion and Outlook

Traditional theoretical approach

E.P. Segarra, T. Jezo, MK et al., Phys. Rev. D 103 (2021) 114015 [2012.11566]

 Q^2 -dependence calculable to N³LO QCD [S. Moch et al., PLB 860 (2025) 139194]

x-dependence at $Q_0 = 1.3$ GeV must be fitted to experiments.

Our traditional parameterisation (e.g. nCTEQ15HIX):

$$x f_i^{p/A}(x, Q_0) = c_0 x^{c_1} (1-x)^{c_2} e^{c_3 x} (1+e^{c_4} x)^{c_5}$$

where $c_k(A) = p_k + a_k(1 - A^{-b_k}), \ k = \{1, ..., 5\},\$ and $i = \{u_v, d_v, (\bar{u} + \bar{d}), (\bar{d}/\bar{u}), s, g\}, \ s = \bar{s} = \kappa(\bar{u} + \bar{d})/2, \ \kappa = 0.5.$ Reproduces free proton for $A \to 1$, open 19 free parameters.

 χ^2 test function for data set D (3 norm. par. for W/Z production):

$$\chi^2_D = \sum_{i,j}^{N} \left(D_i - \frac{T_i}{N_{norm}} \right) (C^{-1})_{ij} \left(D_j - \frac{T_j}{N_{norm}} \right) + \left(\frac{1 - N_{norm}}{\sigma_{norm}} \right)^2$$

Covariance matrix: $C_{ij} = \sigma_i^2 \delta_{ij} + \sum_{\alpha}^{S} \bar{\sigma}_{i\alpha} \bar{\sigma}_{j\beta}$ Hessian (or Markov Chain Monte Carlo) error analysis

22 / 33

Nuclei and SRCs

DIS and nuclear PDFs

Nuclear PDFs from SRCs

Conclusion and Outlook

SRC-motivated nuclear PDFs

A. Denniston, T. Jezo, A. Kusina, MK et al., Phys. Rev. Lett. 133 (2024) 15 [2312.16293]

Nuclear spectral function:

[C. Ciofi degli Atti, Phys. Rep. 590 (2015) 1]

 $S_A(k, E) = S_A^{MF}(\text{small } k, E) + S_A^{SRC}(\text{large } k, E)$

Nuclei and SRCs

DIS and nuclear PDFs

Nuclear PDFs from SRCs

Conclusion and Outlook

SRC-motivated nuclear PDFs

A. Denniston, T. Jezo, A. Kusina, MK et al., Phys. Rev. Lett. 133 (2024) 15 [2312.16293]

Nuclear spectral function:

[C. Ciofi degli Atti, Phys. Rep. 590 (2015) 1]

$$S_A(k, E) = S_A^{MF}(\text{small } k, E) + S_A^{SRC}(\text{large } k, E)$$

SRC proton and neutron contributions: [R. Weiss et al., Phys. Lett. B 791 (2019) 242]

$$S_{A}^{\text{SRC}}(k, E) = \frac{Z}{A} \left[2C_{p/(pp)}^{A} \times S_{A}^{pp} + C_{p/(pn)}^{A} \times S_{A}^{pn} \right] \\ + \frac{N}{A} \left[2C_{n/(nn)}^{A} \times S_{A}^{nn} + C_{n/(pn)}^{A} \times S_{A}^{pn} \right]$$

Nuclei and SRCs

DIS and nuclear PDFs

Nuclear PDFs from SRCs

Conclusion and Outlook

SRC-motivated nuclear PDFs

A. Denniston, T. Jezo, A. Kusina, MK et al., Phys. Rev. Lett. 133 (2024) 15 [2312.16293]

Nuclear spectral function:

[C. Ciofi degli Atti, Phys. Rep. 590 (2015) 1]

$$S_A(k, E) = S_A^{MF}(\text{small } k, E) + S_A^{SRC}(\text{large } k, E)$$

SRC proton and neutron contributions: [R. Weiss et al., Phys. Lett. B 791 (2019) 242]

$$S_A^{\text{SRC}}(k, E) = \frac{Z}{A} \left[2C_{p/(pp)}^A \times S_A^{pp} + C_{p/(pn)}^A \times S_A^{pn} \right] \\ + \frac{N}{A} \left[2C_{n/(nn)}^A \times S_A^{nn} + C_{n/(pn)}^A \times S_A^{pn} \right]$$

Parton model translation (nCTEQ15SRC):

$$f_i^A(x, Q_0) = \frac{Z}{A} \Big[(1 - C_p^A) \times f_i^p(x, Q_0) + C_p^A \times f_i^{p, \text{SRC}}(x, Q_0) \Big] \\ + \frac{N}{A} \Big[(1 - C_n^A) \times f_i^n(x, Q_0) + C_n^A \times f_i^{n, \text{SRC}}(x, Q_0) \Big]$$

where we assume $C_p^A = 2C_{p/(pp)}^A + C_{p/(pn)}^A$ and similarly for $p \leftrightarrow n$.

Nuclei and SRCs

DIS and nuclear PDFs

Nuclear PDFs from SRCs

Conclusion and Outlook

SRC-motivated nuclear PDFs

A. Denniston, T. Jezo, A. Kusina, MK et al., Phys. Rev. Lett. 133 (2024) 15 [2312.16293]

Nuclear spectral function:

[C. Ciofi degli Atti, Phys. Rep. 590 (2015) 1]

$$S_A(k, E) = S_A^{MF}(\text{small } k, E) + S_A^{SRC}(\text{large } k, E)$$

SRC proton and neutron contributions: [R. Weiss et al., Phys. Lett. B 791 (2019) 242]

$$S_A^{\text{SRC}}(k, E) = \frac{Z}{A} \left[2C_{p/(pp)}^A \times S_A^{pp} + C_{p/(pn)}^A \times S_A^{pn} \right] \\ + \frac{N}{A} \left[2C_{n/(nn)}^A \times S_A^{nn} + C_{n/(pn)}^A \times S_A^{pn} \right]$$

Parton model translation (nCTEQ15SRC):

$$f_i^A(x, Q_0) = \frac{Z}{A} \Big[(1 - C_p^A) \times f_i^p(x, Q_0) + C_p^A \times f_i^{p, \text{SRC}}(x, Q_0) \Big] \\ + \frac{N}{A} \Big[(1 - C_n^A) \times f_i^n(x, Q_0) + C_n^A \times f_i^{n, \text{SRC}}(x, Q_0) \Big]$$

where we assume $C_p^A = 2C_{p/(pp)}^A + C_{p/(pn)}^A$ and similarly for $p \leftrightarrow n$. Open 21 parameters ($\sim HIX + s$) + 30/19 for $C_{p,n}^A$ in base/pn.

Nuclei and SRCs

DIS and nuclear PDFs

Nuclear PDFs from SRCs

Conclusion and Outlook

Fitted nuclei and selected comparisons

A. Denniston, T. Jezo, A. Kusina, MK et al., Phys. Rev. Lett. 133 (2024) 15 [2312.16293]

Nuclear A	2	3	4	6	9	12	14	27	40	56	64	84	108	119	131	184	197	208
# data	275	125	66	15	49	196	101	73	92	134	61	84	7	152	4	37	50	163

24 / 33

Nuclei and SRCs

DIS and nuclear PDFs

Nuclear PDFs from SRCs

Conclusion and Outlook

Quality of our fits

A. Denniston, T. Jezo, A. Kusina, MK et al., Phys. Rev. Lett. 133 (2024) 15 [2312.16293]

$\chi^2/N_{\rm data}$	DIS	DY	W/Z	JLab	$\chi^2_{\rm tot}$	$\frac{\chi^2_{\rm tot}}{N_{\rm DOF}}$
Reference	0.85	0.97	0.88	0.72	1408	0.85
SRC baseSRC	0.84	0.75	1.11	0.41	1300	0.80
SRC pnSRC	0.85	0.84	1.14	0.49	1350	0.82

• Better overall quality of the SRC fit

Nuclei and SRCs

DIS and nuclear PDFs

Nuclear PDFs from SRCs

Conclusion and Outlook

Quality of our fits

A. Denniston, T. Jezo, A. Kusina, MK et al., Phys. Rev. Lett. 133 (2024) 15 [2312.16293]

$\chi^2/N_{\rm data}$	DIS	DY	W/Z	JLab	$\chi^2_{\rm tot}$	$\frac{\chi^2_{\rm tot}}{N_{\rm DOF}}$
Reference	0.85	0.97	0.88	0.72	1408	0.85
SRC baseSRC	0.84	0.75	1.11	0.41	1300	0.80
SRC pnSRC	0.85	0.84	1.14	0.49	1350	0.82

- Better overall quality of the SRC fit
- Particularly pronounced for precise high-x JLab data

Nuclei and SRCs

DIS and nuclear PDFs

Nuclear PDFs from SRCs

Conclusion and Outlook

Quality of our fits

A. Denniston, T. Jezo, A. Kusina, MK et al., Phys. Rev. Lett. 133 (2024) 15 [2312.16293]

$\chi^2/N_{\rm data}$	DIS	DY	W/Z	JLab	$\chi^2_{\rm tot}$	$\frac{\chi^2_{\rm tot}}{N_{\rm DOF}}$
Reference	0.85	0.97	0.88	0.72	1408	0.85
SRC baseSRC	0.84	0.75	1.11	0.41	1300	0.80
SRC pnSRC	0.85	0.84	1.14	0.49	1350	0.82

- Better overall quality of the SRC fit
- Particularly pronounced for precise high-x JLab data
- Slightly worse for W/Z bosons, which probe lower x

Nuclei and SRCs

DIS and nuclear PDFs

Nuclear PDFs from SRCs

Conclusion and Outlook

Quality of our fits

A. Denniston, T. Jezo, A. Kusina, MK et al., Phys. Rev. Lett. 133 (2024) 15 [2312.16293]

$\chi^2/N_{\rm data}$	DIS	DY	W/Z	JLab	$\chi^2_{\rm tot}$	$\frac{\chi^2_{\rm tot}}{N_{\rm DOF}}$
Reference	0.85	0.97	0.88	0.72	1408	0.85
SRC baseSRC	0.84	0.75	1.11	0.41	1300	0.80
SRC pnSRC	0.85	0.84	1.14	0.49	1350	0.82

Nuclei and SRCs

DIS and nuclear PDFs

Nuclear PDFs from SRCs

Conclusion and Outlook

A-dependence of C_p^A and C_n^A

A. Denniston, T. Jezo, A. Kusina, MK et al., Phys. Rev. Lett. 133 (2024) 15 [2312.16293]

Almost equal number of protons and neutrons in SRC pairs:

- $^{197}_{79}$ Au ($C_p^A = 0.256$, $C_n^A = 0.178$): 79 $C_p^A \simeq 20.2$, 118 $C_n^A \simeq 21.0$
- ${}^{208}_{82}$ Pb ($C_p^A = 0.295$, $C_n^A = 0.202$): 82 $C_p^A \simeq$ 24.2, 126 $C_n^A \simeq$ 25.5

Nuclei and SRCs

DIS and nuclear PDFs

Nuclear PDFs from SRCs

Conclusion and Outlook

A-dependence of C_p^A and C_n^A

A. Denniston, T. Jezo, A. Kusina, MK et al., Phys. Rev. Lett. 133 (2024) 15 [2312.16293]

Even better agreement after correcting for neutron excess \rightarrow Allows to reduce the number of free parameters: $C_n^A = (Z/N)C_p^A$. Agrees with exclusive quasi-elastic scattering ($pn/NN \simeq 90 \pm 10\%$).

Nuclei and SRCs

DIS and nuclear PDFs

Nuclear PDFs from SRCs

Conclusion and Outlook

Comparison of the two fits

A. Denniston, T. Jezo, A. Kusina, MK et al., Phys. Rev. Lett. 133 (2024) 15 [2312.16293]

pnSRC fit very similar to baseSRC fit: $\chi^2 = 0.82/N_{\rm dof}$ instead of 0.80.

troduction Nuclei and SRCs DIS and nuclear PDFs Nuclear PDFs from SRCs

Conclusion and Outlook

Comparison with QE scattering and QMC calculations

A. Denniston, T. Jezo, A. Kusina, MK et al., Phys. Rev. Lett. 133 (2024) 15 [2312.16293]

Excellent agreement with

- QE data [Fomin, PRL 108 (2012) 092502; Schmookler, Nature 566 (2019) 354; Egiyan, PRL 96 (2006)]
- QMC theory

[R. Cruz-Torres et al., Nature Physics 17 (2021) 306]

Nuclei and SRCs

DIS and nuclear PDFs 00000000 Nuclear PDFs from SRCs

Conclusion and Outlook

Valence quark distributions

A. Denniston, T. Jezo, A. Kusina, MK et al., Phys. Rev. Lett. 133 (2024) 15 [2312.16293]

Sanity check:

SRC *u*, *d* valence quarks in Pb within previous error bands. SRC components 20-30% of full nPDFs in agreement with $C_{p,n}^{A}$.
 Introduction
 Nuclei and SRCs
 DIS and nuclear PDFs
 Nuclear PDFs from SRCs
 Conclusion

 0000000000
 000000000
 0000000000
 000
 0000000000
 000

Ratio of bound to free *pn*-pair structure functions

A. Denniston, T. Jezo, A. Kusina, MK et al., Phys. Rev. Lett. 133 (2024) 15 [2312.16293]

Similar, but SRC more pronounced in EMC-region and universal!

Introduct 0 DIS and nuclear PDFs

Nuclear PDFs from SRCs

Conclusion and Outlook $\bullet \circ$

Conclusion and outlook

Nuclear binding at low energy:

- Off-shell 2-body \leftrightarrow 3-body interactions \rightarrow Shell model
- Quasi-free nucleons in Mean Field motivate bound N PDFs
- But: Strong experimental and theoretical evidence for SRCs
- Striking correlation of QES and DIS in EMC region

Introduct 0 DIS and nuclear PDFs

Nuclear PDFs from SRCs

Conclusion and Outlook

Conclusion and outlook

Nuclear binding at low energy:

- Off-shell 2-body \leftrightarrow 3-body interactions \rightarrow Shell model
- Quasi-free nucleons in Mean Field motivate bound N PDFs
- But: Strong experimental and theoretical evidence for SRCs
- Striking correlation of QES and DIS in EMC region

nCTEQ15HIX:

- Uses very precise JLab data for He, Be, C, Al, Fe, Cu, Au, Pb
- Needs extension of kinematic cuts \rightarrow d, TM, HT corrections
- Very good 19-parameter fit of bound N PDFs

Nuclear PDFs from SRCs

Conclusion and Outlook

Conclusion and outlook

Nuclear binding at low energy:

- Off-shell 2-body \leftrightarrow 3-body interactions \rightarrow Shell model
- Quasi-free nucleons in Mean Field motivate bound N PDFs
- But: Strong experimental and theoretical evidence for SRCs
- Striking correlation of QES and DIS in EMC region

nCTEQ15HIX:

- Uses very precise JLab data for He, Be, C, Al, Fe, Cu, Au, Pb
- Needs extension of kinematic cuts \rightarrow d, TM, HT corrections
- Very good 19-parameter fit of bound N PDFs

nCTEQ15SRC:

- nCTEQ15HIX data + W/Z bosons ightarrow 2 more parameters (s)
- Factorisation of energy scales \rightarrow New SRC ansatz for nPDFs
- Very good fit, in particular to JLab data, and consistent PDFs
- p and n fractions in SRC pairs agree with LE data and theory
- Dominated by pn pairs, again in agreement with LE data
- Partonic structure of SRC pairs universal, large EMC effect

Nuclei and SRCs

DIS and nuclear PDFs

Nuclear PDFs from SRCs

Conclusion and Outlook

Outlook

Future directions:

[O. Hen et al., Rev. Mod. Phys. 89 (2017) 045002]

- Test isospin breaking $(C_n^A \neq \frac{Z}{N}C_p^A, f_n \neq f_p)$ with QED/PV
- Separate $C^{A}_{p,n/(pn)}$ and $C^{A}_{p,n/(pp,nn)}$ with tagging, mirror nuclei
- Separate spin 1 and spin 0 with polarised eA scattering

Introduct 0 Nuclei and SRCs

DIS and nuclear PDFs

Nuclear PDFs from SRCs

Conclusion and Outlook $\circ \bullet$

Outlook

Future directions:

[O. Hen et al., Rev. Mod. Phys. 89 (2017) 045002]

- Test isospin breaking $(C_n^A \neq \frac{Z}{N}C_p^A, f_n \neq f_p)$ with QED/PV
- Separate $C^{A}_{p,n/(pn)}$ and $C^{A}_{p,n/(pp,nn)}$ with tagging, mirror nuclei
- Separate spin 1 and spin 0 with polarised eA scattering

Neutrino CC scattering:

- π^0 production > baryon resonances [MiniBooNE]
- p production > QE prediction \rightarrow pp?

[C. Ciofi degli Atti, Phys. Rep. 590 (2015) 1]

[MiniBooNE, PRD 83 (2011) 052009]

[Minerva, PRL 111 (2013) 022502]

Introduct 0 Nuclei and SRCs

DIS and nuclear PDFs

Nuclear PDFs from SRCs

Conclusion and Outlook

Outlook

Future directions:

[O. Hen et al., Rev. Mod. Phys. 89 (2017) 045002]

- Test isospin breaking $(C_n^A \neq \frac{Z}{N}C_p^A, f_n \neq f_p)$ with QED/PV
- Separate $C^{A}_{p,n/(pn)}$ and $C^{A}_{p,n/(pp,nn)}$ with tagging, mirror nuclei
- Separate spin 1 and spin 0 with polarised eA scattering

Neutrino CC scattering: [C. Ciofi degli Atti, Phys. Rep. 590 (2015) 1]

- π^0 production > baryon resonances [MiniBooNE, PRD 83 (2011) 052009]
- p production > QE prediction \rightarrow pp? [Miner ν_a , PRL 111 (2013) 022502]

Diffraction: [C. Ciofi degli Atti, Phys. Rep. 590 (2015) 1]

- Glauber elastic scattering assumes single N densities
- Gribov inelastic scattering makes nuclei more transparent
- SRCs increase nuclear thickness function \rightarrow less transparent
- SRCs reduce number of probed nucleons (\sim shadowing)

Nuclear PDFs from SRCs

Conclusion and Outlook

Outlook

Future directions:

[O. Hen et al., Rev. Mod. Phys. 89 (2017) 045002]

- Test isospin breaking $(C_n^A \neq \frac{Z}{N}C_p^A, f_n \neq f_p)$ with QED/PV
- Separate $C^{A}_{p,n/(pn)}$ and $C^{A}_{p,n/(pp,nn)}$ with tagging, mirror nuclei
- Separate spin 1 and spin 0 with polarised eA scattering

Neutrino CC scattering: [C. Ciofi degli Atti, Phys. Rep. 590 (2015) 1]

- π^0 production > baryon resonances [MiniBooNE, PRD 83 (2011) 052009]
- p production > QE prediction \rightarrow pp? [Miner ν_a , PRL 111 (2013) 022502] Diffraction: [C. Ciofi degli Atti. Phys. Rep. 590 (2015) 1]
 - Glauber elastic scattering assumes single N densities
 - Gribov inelastic scattering makes nuclei more transparent
 - SRCs increase nuclear thickness function \rightarrow less transparent
 - SRCs reduce number of probed nucleons (\sim shadowing)

Collective effects in QGP:

- Glauber model of individual wounded nucleons (participants)
- SRCs reduce eccentricities

[G. Denicol et al., 1406.7792]

[C. Ciofi degli Atti, Phys. Rep. 590 (2015) 1]