Ab initio simulations of atomic nuclei

State-of-the-art and future challenges

Heavy Ion Coffee Seminar

February 4th, 2025

Alexander Tichai Technische Universität Darmstadt

The nuclear landscape

decay modes

Precise LO-NLO-N2LO-N3LO · Neutrino Majorana na

Quantum chromodynamics

- Ideal scenario: solve for nuclear observables from QCD Lagrangian
- Practically requires (intractable) solution using lattice QCD techniques

Precise LO-NLO-N2LO-N3LO · Neutrino Majorana na

- Ideal scenario: solve for nuclear observables from QCD Lagrangian
- Practically requires (intractable) solution using lattice QCD techniques
- Effective field-theory description

 $\mathcal{L}_{QCD} \longrightarrow H_{EFT}$

Chiral effective field theory

Precise LO-NLO-N2LO-N3LO · Neutrino Majorana na

- Ideal scenario: solve for nuclear observables from QCD Lagrangian
- Practically requires (intractable) solution using lattice QCD techniques
- Effective field-theory description

 $\mathcal{L}_{QCD} \longrightarrow H_{EFT}$

 Solve many-body problem in a systematically improvable way

Quantum chromodynamics

Chiral effective field theory

 $H|\Psi_n\rangle = E_n|\Psi_n\rangle$

Nuclear many-body problem

Precise ab initio p

Precise LO-NLO-N2LO-N3LO · Neutrino Majorana na

- Ideal scenario: solve for nuclear observables from QCD Lagrangian
- Practically requires (intractable) solution using lattice QCD techniques
- Effective field-theory description

 $\mathcal{L}_{QCD} \longrightarrow H_{EFT}$

- Solve many-body problem in a systematically improvable way
- Ab initio promise: controlled uncertainties with predictive power

Quantum chromodynamics

Chiral effective field theory

 $H|\Psi_n\rangle = E_n|\Psi_n\rangle$

Nuclear many-body problem

Precise ab initio p

Precise LO-NLO-N2LO-N3LO
 Neutrino Majorana na

Chiral effective field theory

- Solve many-body problem in a systematically improvable way
- Ab initio promise: controlled uncertainties with predictive power

Evolution of ab initio nuclear structure

Explosion of *ab initio* simulations

Evolution of ab initio nuclear structure

Evolution of ab initio nuclear structure

Highlights in heavy nuclei!

Chiral effective field theory

Weinberg, Epelbaum, Kaplan, van Kolck, Krebs, Machleidt, Meißner, Savage, ...

- Low-energy effective field theory with nucleons/pions as degrees of freedom
- Expansion parameter from separation of scales at low-energies

 $\frac{Q}{\Lambda_b} \approx \frac{1}{3}$

(sets the scale of convergence)

 High-energy physics parametrised by few low-energy constants (LECs)

$$V_{\rm EFT} = V_0 + \sum_i c_i \cdot V_i$$

• Emergence (!) of higher-body operators

Many-body expansions

• Goal: solution of Schrödinger equation

 $H|\Psi_n\rangle=E_n|\Psi_n\rangle$

Many-body expansions

Goal: solution of Schrödinger equation

 $H|\Psi_n\rangle = E_n|\Psi_n\rangle$

 Idea: write exact many-body solution relative to an A-body reference state (leading order)

 $|\Psi_{\text{exact}}\rangle = \hat{W} |\Phi\rangle$

 Leading order must qualitatively capture the dominant correlations of the system!

Many-body expansions

Goal: solution of Schrödinger equation

 $H|\Psi_n\rangle = E_n|\Psi_n\rangle$

 Idea: write exact many-body solution relative to an A-body reference state (leading order)

 $|\Psi_{\text{exact}}\rangle = \hat{W} |\Phi\rangle$

- Leading order must qualitatively capture the dominant correlations of the system!
- The unknown wave operator encapsulates all the complexity of the system

$$W = W^{[0B]} + W^{[1B]} + W^{[2B]} + W^{[3B]} + \dots$$

work-horse / high-precision

Interaction uncertainties

- Ab initio theory allows for rigorous quantification of theory uncertainties
- Interaction uncertainties estimated from order-by-order calculations

$$\Delta X^{(k)} = Q \cdot \max\{|X^{(k)} - X^{(k-1)}|, \Delta X^{(k-1)}\}$$

• Similar studies of theory uncertainties in nuclear-matter simulations

Drischler et al., PRL (2020) Keller et al., PRL (2023)

 Many-body uncertainties still based on empirical *ad-hoc* models

2-3% of ground-state energy

Tichai et al., Frontiers in Physics (2020)

Hüther et al., PLB (2020)

Towards many-body uncertainties

• Simple framework for ground states: many-body perturbation theory

 $E_0 = E_{\rm ref} + E^{(2)} + E^{(3)} + \dots$

• Error model for truncated expansion

with I. Svensson, K. Hebeler, A. Schwenk

Probability distributions of parameters

Towards many-body uncertainties

• Simple framework for ground states: many-body perturbation theory

 $E_0 = E_{\rm ref} + E^{(2)} + E^{(3)} + \dots$

• Error model for truncated expansion

• Learn coefficients of error model from MBPT results for given interaction

R < I indicates convergence!

with I. Svensson, K. Hebeler, A. Schwenk

Probability distributions of parameters

Medium-mass nuclei

1- and 2-*o* error bands for closed-shell nuclei

- Large uncertainties for secondorder MBPT calculations
- Significantly reduced uncertainty at third order for all nuclei
- 'Interaction softness': strong suppression of higher-order terms

Harder interactions: larger R

Replace ad hoc estimates with statistically sound predictions

In-medium similarity renormalization group

e reference state of Soffee Seminar

In-medium similarity renormalization group

• Goal: decoupling of elementary particle-hole excitations from reference state

• Basic formulation: ground-state energy from H(s)

$$\lim_{s\to\infty} \langle \Phi | H(s) | \Phi \rangle = E_0$$

• Particle-hole correlations are absorbed into the renormalized Hamiltonian

$$E^{(2)}, E^{(3)} \longrightarrow 0$$

-400 $10^{-5}10^{-4}10^{-3}10^{-2}10^{-1}1$

 $s \left[\text{MeV}^{-1} \right]$

 $E \left[\,\mathrm{MeV}
ight]_{+}$

-350

In-medium similarity renormalization group

• Goal: decoupling of elementary particle-hole excitations from reference state

$$H(s) = U^{\dagger}(s) H U(s)$$

$$\uparrow$$
A-body rotation

• Basic formulation: ground-state energy from H(s)

• Particle-hole correlations are absorbed into the renormalized Hamiltonian

Approximation: induced higher-body operators

$$H(s = 0) \longrightarrow H(s) \neq \tilde{H}(s)$$

$$\uparrow \qquad \uparrow$$

$$\underline{A}\text{-body operator} \qquad \underline{two}\text{-body operator}$$

Valence-space formulation

• Freezing of nucleons in an inert core

$$\dim \mathcal{H}_A = \begin{pmatrix} \text{\#basis functions} \\ A \end{pmatrix}$$

Valence-space formulation

Stroberg et al., Ann. Rev. Nucl. Part. Sci (2019)

- Valence-space IMSRG: modified decoupling yields ab initio shell-model interactions
- Freezing of nucleons in an inert core

$$\dim \mathcal{H}_{A} = \begin{pmatrix} \text{\#basis functions} \\ A \end{pmatrix}$$

Valence-space formulation

Bohr-Mottelson shell ordering

- Valence-space IMSRG: modified decoupling yields *ab initio* shell-model interactions
- Freezing of nucleons in an inert core

$$\dim \mathcal{H}_A = \begin{pmatrix} \text{\#basis functions} \\ A \end{pmatrix}$$

- Solve large-scale eigenvalue problem within an active space of limited size
- Example: spectroscopy of ⁴⁸Ca with ⁴⁰Ca core and neutron *pf* orbits as active space (green)

No-core: 48 particles in 2000 states

With core: 8 particles in 20 states

Precision simulations in calcium (Z=20)

Heinz, ..., Tichai, arXiv:2411.16014

High-resolution picture

High-resolution picture

Removal of 97% of information!

('blurriness' induces uncertainty)

Low-resolution picture

High-resolution picture

Removal of 97% of information!

('blurriness' induces uncertainty)

Low-resolution picture

Singular value decomposition (SVD)

High-resolution picture

Removal of 97% of information!

('blurriness' induces uncertainty)

Low-resolution picture

Singular value decomposition (SVD)

High-resolution picture

Removal of 97% of information!

('blurriness' induces uncertainty)

Low-resolution picture

Singular value decomposition (SVD)

Low-rank interactions

NN applications: Tichai et al., PRC (2019), EPJA(2019), PLB (2022), PRC(2023) Zhu et al., PRC (2022); Frosini et al. (2024)

 Application to partial-wave-decomposed three-body matrix elements

 $\langle pq, \alpha | V_{3N} | p'q', \alpha' \rangle$

Very few SVD components needed

~100 out of 15.000

 Reminder: chiral EFT is built from only ~20 parameters (LECs)

Low-rank patterns: Employed data representations is redundant.

Medium-mass nuclei

Ground-state observables for closed-shell nuclei

- Matrix elements from transformation of low-rank 3N interactions
- Low error on observables from different many-body schemes
- Slight increase of decomposition error with mass number
- I% of singular values yield less than keV errors on ground-state energy

Many-body systems

99% of singular values can be discarded at zero loss in accuracy!

Medium-mass nuclei

Nuclear tensor networks

- Factorized ansatz of the many-body function: matrix-product state (MPS)
- Novel many-body solver will solve for the factors themselves (
)
- Density matrix renormalization group: variational optimization of MPS

White, PRL (1992)

Nuclear tensor networks

- Factorized ansatz of the many-body function: matrix-product state (MPS)
- Novel many-body solver will solve for the factors themselves (
)
- Density matrix renormalization group: variational optimization of MPS

White, PRL (1992)

• Systematically improvable by increasing the bond dimension *M*

Tichai et al., PLB (2024)

⁷⁸Ni: Why DMRG?

- DMRG: economic representation of the many-body wave function
- Tensor networks select the important part of Hilbert space
- Robust convergence of DMRG energies at large bond dimension
- Cl extrapolation: 2+ state exhibits linear convergence pattern

Quantifying entanglement

Tichai et al., PLB (2023)

see also Taniuchi et al., Nature (2019)

2018nuclear DMRG 16Total entropy 1 71 15 14 N=50 shell closure A_{28} Ni 4 $\mathbf{2}$ 0 72 747678 80 70mass number AVS.

Different occupation profiles

• Entanglement through information science

$$s_i = -[n_i \log n_i + \bar{n}_i \log \bar{n}_i]$$

*n*_i: occupation number

• Total entropy quantifies entanglement

$$I_{\text{tot}} = \sum_{i} s_i$$

• Kink at ⁷⁸Ni hints at neutron shell closure

Many-body correlations

- Mutual information: pairwise correlations among orbitals
 - **Two-body density matrix**
- Superfluidity: clear signals of BCStype *n*-*n* and *p*-*p* correlations

Time-reversed pairs $|nljmt\rangle \leftrightarrow |nlj(-m)t\rangle$

Suppression of n-p correlations

 Closed-shell nuclei with N/Z = 8, 20, 28, 50,... have spherical shapes

- Closed-shell nuclei with N/Z = 8, 20, 28, 50,... have spherical shapes
- Open-shell nuclei away from shell closures have deformed shapes
- Mass-independent deformation parameter

$$\beta \sim \frac{\langle Q_{20}\rangle}{R^2 A} \qquad \frac{r_x}{r_z} = 1 + \beta$$

(difference in semi axis of ellipsoid)

Axial deformation

- Closed-shell nuclei with N/Z = 8, 20, 28, 50,... have spherical shapes
- Open-shell nuclei away from shell closures have deformed shapes
- Mass-independent deformation parameter

$$\beta \sim \frac{\langle Q_{20}\rangle}{R^2 A} \qquad \frac{r_x}{r_z} = 1 + \beta$$

(difference in semi axis of ellipsoid)

• Characteristic energy patterns in rotational bands of deformed nuclei

$$E_J \sim J(J+1)$$

rotational band ('yrast')

- Closed-shell nuclei with N/Z = 8, 20, 28, 50,... have spherical shapes
- Open-shell nuclei away from shell closures have deformed shapes
- Mass-independent deformation parameter

$$\beta \sim \frac{\langle Q_{20}\rangle}{R^2 A} \qquad \frac{r_x}{r_z} = 1 + \beta$$

(difference in semi axis of ellipsoid)

• Characteristic energy patterns in rotational bands of deformed nuclei

$$E_J \sim J(J+1)$$

 Increased electromagnetic transitions within rotational band: B(E2) strengths

rotational band ('yrast')

Transitional nuclei at N=50

Onset of nuclear deformation

$$E_{\rm rot}^{\star} \sim J(J+1)$$
 $R_{42} = 10/3$

- Rapid transition between singleparticle-like and collective excitations
- Qualitative agreement with previous shell-model calculations Nowacki et al., PRL (2016)
- Spectroscopy: DMRG extended to electromagnetic transitions

Transitional nuclei at N=50

Intrinsic structure of ⁷⁸Ni

 Potential energy surface (PES) from Hartree-Fock-Bogoliubov calculation

 $H - \lambda \cdot (Q_{20} - \langle Q_{20} \rangle)$

PES: energy as function of deformation

 $E_{\rm HFB}(\beta)$

- HFB ground state breaks rotational symmetry and particle number
- Coexisting minimum for prolate shape

Future challenges

 Improvement of bulk properties: ground-state energy

> Particle-hole correlations (generates ~200 MeV binding)

• IMSRG destroys all intrinsic structure of the wave function

Rotational band is gone!

• Current IMSRG formulations:

 $H_{\rm IMSRG} = f(H_{\rm nucl}, \bigcirc)$

• Next generation of IMSRG:

 $H_{\rm IMSRG} = f(H_{\rm nucl}, \ \bigcirc, \ \bigcirc, \ \bigcirc, \ (), \ \ldots)$

Future challenges

Conclusion and outlook

First-principles description of atomic nuclei

- Modern interactions via effective field theory: rooted in QCD
- Progress in many-body theory enables heavier and exotic systems
- Quantification of theory uncertainties: interaction + many-body

Major goal: controlled descriptions of structurally complex systems

Novel frameworks in nuclear many-body theory

- Low-rank properties present in chiral interactions
- Tensor networks leverage factorized form of wave function
- Importance of nuclear deformation in open-shell nuclei

Science opportunity: link nuclear theory to heavy-ion collisions