Higgs Searches at ATLAS

W. Quayle
for the ATLAS collaboration

Berkeley Workshop on SUSY at LHC

21 October, 2011
In the Standard Model, Higgs boson production primarily through gluon fusion and Weak Boson Fusion (WBF)
- Typical Feynman diagrams for ggH and WBF are shown above

In some searches (e.g. $H \rightarrow \gamma\gamma$, bb), $WH/ZH/ttH$ are important too
- Typical Feynman diagrams for WH/ZH and ttH are shown below
Right: cross-sections (top) and branching ratios (bottom) in the Standard Model (SM)

Decay modes which have been analyzed in data:
- $H \rightarrow WW$, $H \rightarrow ZZ$ at high mass
- $H \rightarrow bb$, $H \rightarrow \tau \tau$, and $H \rightarrow \gamma \gamma$ at low m_H

Cross-sections are taken from “Handbook of LHC Higgs Cross-sections,” arXiv:1101.0593
Requiring two leptons suppresses QCD multijet background to negligible levels.

Large background from Z is suppressed by requiring large \(E_{T,\text{miss}} \) in same-flavor events (left).

Top events are rejected by cut on jet multiplicity (right).

Presently, only \(N_{\text{jet}}=0 \) and \(N_{\text{jet}}=1 \) considered.
Event selection exploits different angular distributions caused by kinematics and by spin correlations. Above: M_{ll} (left) and $\Delta\phi_{ll}$ (right) in events with no jets.

Backgrounds are estimated with control samples:
- Diboson: count events in a region with altered M_{ll} and $\Delta\phi_{ll}$ cuts
- Top (in H+1j): reverse b-veto and drop cuts on M_{ll}, M_T, and $\Delta\phi_{ll}$

<table>
<thead>
<tr>
<th>Control Region</th>
<th>Expected BG</th>
<th>Observed</th>
</tr>
</thead>
<tbody>
<tr>
<td>WW+0j</td>
<td>250±50</td>
<td>238</td>
</tr>
<tr>
<td>WW+1j</td>
<td>139±18</td>
<td>144</td>
</tr>
<tr>
<td>tt+1j</td>
<td>350±100</td>
<td>316</td>
</tr>
</tbody>
</table>
For major backgrounds (WW+0/1j and tt+1j), control samples are modeled in fit using ratio of cross-sections in signal region over control region taken from MC

- WW+1j control region has significant contamination from top, so use tt+1j control region to normalize it as well

Above: uncertainties on the ratio of cross-sections in the signal region over the listed control region.

- The last column shows the uncertainty in the ratio of top backgrounds in the WW+1j control sample and the top control region for H+1j.
Backgrounds which are small after cuts (ttbar in H+0j, W+jets, Z+jets) are also measured using control regions, but only the final estimate is modeled in the Likelihood, not the control sample itself:

- **W+jets**: loosened lepton selection. Derive a p_T-dependent extrapolation factor from dijet data to get estimate in signal region, accounting for contamination from real leptons.

- **Top in H+0j uses two control samples:**
 - Two leptons and E_T^{miss} w/non-top backgrounds removed using MC
 - Two leptons and E_T^{miss}, w/ ≥ 1 b-tagged jet; used to estimate an efficiency for the jet veto
 - Efficiency from second control sample and corrections from MC are applied to first control sample to estimate top in signal region

- **Z+jets**: use events on Z peak to derive a correction factor for the ratio of high-E_T^{miss} to low-E_T^{miss}; apply it to events with small m_{ll}.
Upper bounds on production cross-section (left) and significance of excess over background (right).

- No significant excess, always less than about 2σ
- Upper limit is set as a function of m_H, in units of the Standard Model prediction. ATLAS excludes $154 < m_H < 186$ GeV ($135 < m_H < 196$ GeV expected)
Select events with one lepton, two or three jets, and E_T^{miss}.

Two jets must have m_{jj} close to m_W (left)

- Contributes to large systematic from the jet E scale uncertainty

Estimate background from jets misidentified as leptons using a sample of events in data with lepton isolation cut reversed.

- Can estimate the shapes of most kinematic variables by just plotting. See, for example, green region in upper right plot

- A normalization factor is estimated with a template fit to the E_T^{miss} distribution (right). Shape of V+jets taken from MC, but it floats in the fit too and both contributions are rescaled for the final plots.
Estimate $P_{Z \nu}$ and M_{WW} by solving $M_W = M_{lv}$. Require two real solutions; take one with smaller $|P_{Z \nu}|$.

Fit M_{lvqq} distribution with a double exponential for background, hist PDF for signal.

Exclude $2.7 \times \text{SM}$ for $m_H = 400$ GeV.
Signature is two leptons and two jets, with small MET, and with M_{ll} and M_{qq} near M_Z.

- Divide the signal into events with fewer than two b-tagged jets (left) and events with two (right)
- For $m_H \geq 300$ GeV, also use angular information about the jets and leptons to suppress background.
 - Require $\Delta \phi_{ll} > \pi/2$ and $\Delta \phi_{jj} > \pi/2$
Background shape and normalization in MC is validated by data/MC comparisons in m_{jj} sidebands (left) and m_{ll} sidebands (not shown)

- Systematic error on the Z+jets normalization comes from comparisons of these sidebands, and ranges from 1.4% for low-m_H untagged selection to 18% for high-m_H b-tagged selection. Shape uncertainty comes from comparisons between Pythia and Alpgen.

- Observed limits are approaching the Standard Model prediction for m_H near ~300-400 GeV
Two leptons with \(m_{ll} = m_Z \) and very large MET (left)

Diboson BG is from MC

\(E_T^{\text{miss}} \) performance in top BG checked using events with \(m_{ll} \) outside Z peak (top right) and \(e\mu \) events (bottom right)

Z and W+jets evaluated from MC with data/MC comparisons
- **Left:** set limits based on the transverse mass distribution
 - Systematic errors on BG normalization: gluon fusion signal (+14/-10%), VBF signal (4%) and diboson background taken from theory; top quark production (9%), W+jets (100%), and QCD multijet (50%) are estimated from data

- **Right:** we are just starting to exclude a Standard Model Higgs boson around $360 < m_H < 420$ GeV
Very clean: four leptons (e or μ)

Dilepton mass, lepton isolation, and impact parameter cuts suppress top and Z+jets

Good four-lepton mass resolution helps separate signal from otherwise irreducible continuum ZZ background
Background estimates:
- ZZ from MC prediction
- Top also from MC prediction, but validated in control region
- Z+jets normalized to data using control region based on loosened isolation cuts for second lepton pair

Very close to excluding a broad region of Standard Model parameter space

Some values of m_H near 200 GeV are already excluded
H→γγ (1)

- H→γγ decay proceeds only via top and W loops, so BR(H→γγ) is small (~0.002). However, no subsequent decay as in the case of H→ZZ→4l.
- H→γγ signal is 0.04 pb, but background from continuum γγ is very large
 - Cross-section for qq→γγ is ~21 pb; for qg→γγ it's about 8 pb.
 - Background from γ+jet (before photon ID cuts) is ~1.8x10^5 pb
 - Background from dijets is ~5x10^8 pb.
 - Need large rejection, esp. against π^0 decays.
- Photon ID is based on lateral and longitudinal segmentation of the electromagnetic calorimeter.
Very good mass resolution of ~1.7 GeV helps distinguish between Higgs signal and continuum background.

Events are separated into categories based on the quality of photon reconstruction and location of photon candidates.

Resolution ranges from ~1.4 GeV for unconverted photons in the central region of the detector (left) to ~2 GeV with asymmetric tails for photons which land in the region between the barrel and endcap and also show signs of having converted to an e^+e^- pair before reaching the calorimeter (right).
Improve mass resolution by using “pointing” information: positions of clusters in the different calorimeter layers can give an estimate of the photon's direction of flight, and identifies the primary vertex with a resolution of ~20-30 mm (left).

Signal is extracted using a fit to $M_{\gamma\gamma}$ (right). Plot shown above is inclusive, but fit treats pseudorapidity/conversion categories separately.

Normalization of background from jets is checked using loosened photon ID cuts.

- Measured background is compatible with predictions.
Systematic Uncertainties:
- Signal Yield (±12%)
- Invariant Mass Resolution (±14%)
- Background modeling (depends on m_H; ±5 events for $m_H=110$ GeV, ±3 events for $m_H=150$ GeV.)

ATLAS currently excludes ~2-6 times the Standard Model prediction, depending on m_H.
ggH and WBF are dominant Higgs production mechanisms, but for H→bb these modes are overwhelmed by background. WH/ZH (H→bb) is best for this decay mode.

- Select W→lν and Z→ll decays by requiring two leptons or one lepton and E_T^{miss}.
- Select two b-tagged jets with p_T>25 GeV.
- Dominant backgrounds for both are W+jets, Z+jets, top.
Top quark backgrounds are checked with control samples.

Left: control sample for WH consists of events with three jets (in the signal region only two are allowed)
- Top normalization in signal region comes from fit to sidebands in m_{bb}

Right: control sample for ZH consists of events with m_{ll} outside the Z peak
- Assign 9% uncertainty to top in ZH based on this comparison; 6% for top in WH based on the fit to m_{bb}
WH/ZH, $H \to bb$ (3)

ATLAS-CONF-2011-103

<table>
<thead>
<tr>
<th>Uncertainty</th>
<th>ZH, 115 GeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muon Res.</td>
<td>1%</td>
</tr>
<tr>
<td>Jet E scale</td>
<td>9%</td>
</tr>
<tr>
<td>E_T^{miss} Res.</td>
<td>2%</td>
</tr>
<tr>
<td>b-tagging eff.</td>
<td>16%</td>
</tr>
<tr>
<td>b-tag mistag</td>
<td><1%</td>
</tr>
<tr>
<td>Luminosity</td>
<td>4%</td>
</tr>
<tr>
<td>Higgs x-sec</td>
<td>5%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>WH, 115 GeV</th>
<th></th>
<th>WH, 130 GeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muon Res.</td>
<td>1%</td>
<td>3%</td>
<td>1%</td>
</tr>
<tr>
<td>Jet E scale</td>
<td>7%</td>
<td>1%</td>
<td>3%</td>
</tr>
<tr>
<td>E_T^{miss} Res.</td>
<td>2%</td>
<td>2%</td>
<td>3%</td>
</tr>
<tr>
<td>b-tagging eff.</td>
<td>16%</td>
<td>16%</td>
<td>17%</td>
</tr>
<tr>
<td>b-tag mistag</td>
<td><1%</td>
<td>3%</td>
<td>3%</td>
</tr>
<tr>
<td>Luminosity</td>
<td>4%</td>
<td>4%</td>
<td>4%</td>
</tr>
<tr>
<td>Higgs x-sec</td>
<td>5%</td>
<td>5%</td>
<td>5%</td>
</tr>
</tbody>
</table>

- **Above:** major sources of background uncertainty. Several other sources contribute at the level of 1% or less
 - Electron E scale & resolution, Jet E res., electron and muon efficiency

- **Exclude Higgs production with cross-section \sim10-20 times the Standard Model prediction**
Promising channel for $110 < m_H < 140$ GeV

- In the H+1j final state considered here, both ggH and WBF contribute

- Require two leptons and at least one hard jet ($p_T > 40$ GeV).

Analysis is based on $m_{\tau\tau}$ assuming τ decay products are collinear with parent τ lepton (left)
Z→ττ is estimated by τ embedding (select Z→μμ in data and replace the reconstructed muons by simulated tau leptons)

- Top, Z→ee/μμ, and diboson backgrounds are taken from MC
- Backgrounds from jets misidentified as leptons are taken from control sample with reversed isolation, normalized by a template fit in the signal region

- Overall agreement is good. Example plots above: dilepton invariant mass (left) and E_T^{miss} (right)
Dominant sources of systematic error on background are the jet energy scale uncertainty (-9.8/+7.0%) and MC statistics (8%).

No significant excess. Upper limits on cross-section are about 30x the Standard Model prediction (above).
Exclude a Standard Model Higgs boson with m_H in the ranges 146-232 GeV, 256-282 GeV, or 296-466 GeV.

- Includes $H \rightarrow \gamma \gamma$, $H \rightarrow bb$, $H \rightarrow \tau \tau$, $H \rightarrow WW \rightarrow l\nu l\nu$, $H \rightarrow ZZ \rightarrow 4l$, $H \rightarrow ZZ \rightarrow ll \nu \nu$, and $H \rightarrow ZZ \rightarrow llqq$
With this year's data, expect only a small window of allowed Standard Model Higgs masses to remain near the LEP limit.

With another 5-10 fb$^{-1}$ next year, we should have a much stronger statement

...but a Higgs discovery in 114-130 GeV is challenging at this center-of-mass energy
Using the $H \rightarrow WW \rightarrow l\nu l\nu$ channel, ATLAS excludes the presence of a Higgs boson in the ranges 154-186 GeV.

The $H \rightarrow WW \rightarrow l\nu qq$ search excludes about 2.7 times the Standard Model cross-section at $m_H = 400$ GeV.

With $H \rightarrow ZZ \rightarrow ll\nu\nu$, exclude 360-420 GeV. Independent limits from $H \rightarrow ZZ \rightarrow llqq$ and $H \rightarrow ZZ \rightarrow 4l$ are approaching exclusion of the Standard Model for some masses.

$H \rightarrow \gamma\gamma$ search excludes $\sim 2-6 \times$SM.

$H \rightarrow \tau\tau$ search currently excludes $\sim 30 \times$ the SM prediction.

$WH/ZH \rightarrow bb$ search excludes $\sim 10-20$ times SM prediction.

Except for two holes (232-256 GeV and 282-296 GeV), the SM Higgs is excluded for $146 < m_H < 466$ GeV with current analyzed luminosity.