

SUSY Searches with Displaced Vertices in CMS

Hongliang Liu University of California, Riverside

On behalf of the CMS collaboration

BerkeleySUSY: Workshop on Supersymmetry at the LHC, Oct 19th-21st, 2011

Two analyses in CMS

- Long-lived neutral particles to displaced leptons
 - ♦ Analysis at CMS: EXO-11-004
 - ♦ 1.1 /fb

Search for Heavy Resonances Decaying to Long-Lived Neutral Particles in the Displaced Lepton Channel

The CMS Collaboration

Long-lived neutral particles to

displaced photons

Analysis at CMS:
EXO-11-067

♦ 2.1 /fb

Search for new physics with long-lived particles decaying to photons and missing energy

The CMS Collaboration

Motivation for the displaced lepton search

- - Higgs bosons decaying to two long-lived, massive, neutral particles
 - They can be SUSY Higgs, or Higgs in some other models.
 - Each have a finite branching ratio to decay to dileptons.

$$H^0 \to 2X, X \to \ell^+\ell^-$$

- Signature: One or two **displaced vertices** formed by a pair of oppositely charged leptons (electrons or muons)
 - Electron channel: two identified electrons
 - Muon channel: two identified muons
- Key point: to make use of displaced track reconstruction.

Displaced track reconstruction

- "Iterative tracking" algorithm in CMS.
 - Five iterations for different purpose
 - First iteration to find tracks originating near the primary vertex, using seeds in pixel tracker.
 - Additional steps for very low momentum tracks and highly displaced tracks.
- Fracking efficiency for single isolated particles can reach the transverse impact parameter d₀ up to 40 cm.
- Displaced lepton identification
 - Sy matching tracks to lepton trigger objects.

CMS Preliminary √s=7 TeV MC

Displaced track finding efficiency

- Cosmic muons are used to model the displaced track finding efficiency.
 - An abundant source of very displaced tracks.
- Data and simulation **agree** to within 10%.

Efficiency of the tracker to find a track given a cosmic muon reconstructed in the muon chambers, as a function of the transverse impact parameters. Data is in black full points, and simulation in red open points.

Searches at CMS

- One or two displaced vertices in the final state.
- ightharpoonup Monte Carlo signal $H^0 \to 2X, X \to \ell^+\ell^-$
 - Variety of Higgs masses and X lifetimes
 - Upper limits are set as function of X mass and lifetime.
- \supseteq Background: QCD, $t\bar{t}$, $Z/\gamma \to \ell^+\ell^-$, W^\pm/Z with leptonic decays.

The transverse decay length significance of the candidates for the dielectron channel.

Signal and background

- Signal: a **narrow resonance** in the mass spectrum.
- Background estimation
 - Integrated over the entire dilepton mass spectrum
 - 0.79±0.99 events for electron channel
 - 0.02±2.28 events for muon channel

Reconstructed dilepton mass in the dielectron channel after all selection cuts have been applied

Results

- Upper limits on σB can be set as a function of X lifetime, for different X mass.
 - \diamond σ : cross section of XX pair-production
 - \Diamond B: branching ratio of X \rightarrow II
- Muon channel for example.
 - ♦ Higgs mass of 200 GeV/c²
- Higgs masses of 200-1000 GeV/c² and X boson masses of 20-350 GeV/c²
 - limits are typically in the range0.003-0.03 pb
 - ♦ X bosons transverse decay length less than about 1 meter.

CMS Preliminary √s=7 TeV L=1.2 fb⁻¹

95% C.L upper limits on σB for the muon channel for a Higgs mass of 200 GeV/ c^2 .

Motivation for the displaced photon search

- Massive, neutral-charge, long-lived particles → photons
 - e.g. Hidden Valley, Gauge-mediated SUSY model
- Gauge-mediated SUSY model for example
 - Neutralinos as NLSP: can have nonzero lifetimes
 - Photons are displaced, and not pointing back to the interaction point.
 - Very light Gravitino: LSP
- However, photons can **not** be readily assigned to a given interaction vertex.

If R-parity is conserved, gravitinos will not decay, thus E_{T}^{miss} is expected.

$$\tilde{\chi}_1^0 \rightarrow \gamma + \tilde{G}$$

Displaced photons from long-lived neutralino not pointing back to the interaction point.

Searches at CMS

- The search strategy
 - ♦ Final states: Y+Y at least one conversion
 - Diphoton trigger
 - Any isolated photons E_T>45 GeV in ECAL barrel
 - Examine d_{XY} of every single converted photon
 - ♦ The presence of jets
 - \diamond E_Tmiss > 30 GeV
 - Lower than E_T^{miss} cut in some other SUSY searches involving photons.
 - ♦ Low E_T^{miss} as control samples for background estimation.

The method: photon conversion

- CMS Tracker based on silicon technology
 - A substantial amount of material
 - ♦ A large fraction of photons convert into e⁺e⁻ pairs
 - "photon conversions" or "conversions"
- Reconstructed photon conversions can be used to give the **photon direction**.

Conversion reconstruction in CMS

- Zero mass conversion vertex→e+e- tracks are parallel in momentum
 - \diamondsuit Selection and vertex fitting with kinematic constraint on θ and ϕ
- Three algorithms of photon conversion reconstruction in CMS
 - Tracker-only
 - ♦ ECAL-seeded
 - Gaussian summation filter (GSF) electrons.
- Merged conversion collections and duplication removal.
- The transverse impact parameter d_{XY} can be calculated from photon conversions.
 - \Diamond Long-lived particle \rightarrow large d_{XY}

Illustration of IP calculation using photon conversion direction

Signal selections

Table 1: Signal selection cut flow for $c\tau = 5$ cm

Selection	Events in Monte Carlo		
Total	45057		
DiPhoton trigger	39988		
Photon $E_T > 45$ GeV and $E_T > 30$ GeV	37398		
Any ECAL barrel photon $E_T > 45$ GeV and Photon identification	27766		
Jets $p_T > 80 \text{ GeV}$ and $p_T > 50 \text{ GeV}$	26229		
Conversion selection	1602		
$E_T^{miss} > 30 \text{ GeV}$	1542		
$d_{XY} > 0.6 \text{ cm}$	711		

Acceptance times efficiency from minimal GMSB diphoton simulation, reweighted for pile-up.

Cut on $d_{XY}>0.6$ cm is chosen by optimizing expected limits from background (next page).

Table 2: Event selection efficiency vs $\tilde{\chi}_1^0$ lifetimes

<i>cτ</i> [cm]	2	5	10	25
	0.921%			
Statistical errors	0.046%	0.059%	0.064%	0.055%

Transverse IP d_{XY} for data vs signal simulation (c**τ** 5 cm), normalized to the integrated luminosity of data.

One event satisfying all selection criteria is observed.

Estimation of background

No true large E_Tmiss

- \checkmark Y's and jets in the final state
 - \Diamond Single γ + jets: real energetic photons
 - QCD multi-jets: jets misidentified as photons
- 🍹 Data-driven estimation
 - **♦ Data for E**_T^{miss}**< 20 GeV as control region**
 - Normalization by number of conversions
 - Reweighted by conversion vertex χ2 probability
 - \Diamond A cut on the d_{XY}>0.6 cm
 - \diamond Total background $0.78^{+1.25}_{-0.48}$ events

d_{XY} distribution for E_T^{miss}< 20 GeV and E_T^{miss}>30 GeV for isolated photons

- Is this estimation a good description of the background?
 - Control samples in data: fake photons
 - Non-isolated photons or jets misidentified as photons.
 - Compare d_{XY} distribution for fake photons and isolated photons

Fake photons as control samples

- φ d_{XY} distribution comparison
 - ♦ Fake photon E_T^{miss}<20 GeV vs E_T^{miss}>30 GeV (left)
 - ♦ Fake photon E_T^{miss}<20 GeV vs isolated photon E_T^{miss}<20GeV (right)</p>
 - \diamond Normalization by the total number of conversions, and reweighted by conversion vertex χ^2 probability.

- $\stackrel{\checkmark}{\Rightarrow}$ Agreement of the d_{XY} distributions of fake photons and isolated photons.
 - **♦** We conclude that the background estimation is sufficient.

Results

One event satisfying the selection criteria is observed.

 \Diamond Photon d_{XY}=-0.74 cm, E_T^{miss}=44.9 GeV

 $\stackrel{\checkmark}{\triangleright}$ Background rate $0.78^{+1.25}_{-0.48}$ event.

CLs limit with likelihood-ratio at 95% CL, using the log-normal model

Cross section [pb]

Systematics	Uncertainty (%)		
Conversion efficiency	20.6		
d _{XY} resolution	<0.5		
Luminosity	4.5		
Jet/E _T miss energy scale	< 0.5		
Pile-up	2.5		
Photon Data/MC scale	2.6		
Photon ID	0.5		
Total	25		

Upper limits are set as a function of lifetime on the cross section for pair-production of long-lived neutral particles, each of which decays to a photon and missing energy.

cτ [cm]	2	5	10	25
σ [pb] 95% C.L.	0.24	0.14	0.12	0.16

Summary

Long-lived particle to leptons

- Iterative tracking in CMS has the capability to find displaced tracks.
- \diamondsuit Upper limits are placed on the cross section \times branching ratio of the process $H^0 \to 2X, X \to \ell^+\ell^-$
- ♦ Higgs masses of 200-1000 GeV/c² and X boson masses of 20-350 GeV/c²
 - limits are typically in the range 0.003-0.03 pb
 - X bosons transverse decay length less than about 1 meter.

Solution Long-lived particle to photons

- Photon conversion is an appropriate technique to search for long-lived particles decaying to photons.
- \Diamond Search in the final state of photons plus jets plus E_T^{miss} , with large photon IP.
 - Relatively lower E_T^{miss} cut (>30 GeV) compared with other SUSY searches involving photons
 - Sensitive to shorter lifetime (0.1 ns to 1 ns)
- Upper limits are set on the cross section for pair-production of long-lived neutral particles, each of which decays to a photon and missing energy.