

ATLAS searches for R-parity violating SUSY

Vasiliki A. Mitsou (IFIC Valencia)

for the ATLAS Collaboration

Workshop on Searches for Supersymmetry at the LHC October 19 – 21, 2011, LBNL, Berkeley, CA

Outline

- R-parity violation (RPV) in SUSY
 - phenomenological consequences
- Bilinear RPV prompt LSP decays
- Resonant sneutrino LSP
- Summary

Acknowledgement: Largely based on talk by Emma Torró Pastor, SUSY2011, 28 Aug – 2 Sep 2011, Fermilab

• R-parity violation • R-parity: $R = (-1)^{3(B-L)+2s} \rightarrow R = \begin{cases} +1, \text{ for SM particles} \\ -1, \text{ for superpartners} \end{cases}$

 R-parity conservation hinted but not required by proton stability L-number violating terms

$$W_{Rp} = \lambda_{ijk} \hat{L}_i \hat{L}_j \hat{E}_k^C + \lambda'_{ijk} \hat{L}_i \hat{Q}_j \hat{D}_k^C + \epsilon_i \hat{L}_i \hat{H}_u + \lambda''_{ijk} \hat{U}_i^C \hat{D}_j^C \hat{D}_k^C$$

bilinear terms

B-number violating terms

Rp conservation	Rp violation
Sparticles produced in pairs	Single sparticle production possible
Neutral and colorless LSP	LSP may be charged and/or carry color
Stable LSP → gives rise to high missing momentum	 LSP decays → possibility for new signals exploit LSP invariant mass potentially long LSP lifetime MET may or may not be high

ATLAS RPV SUSY analyses

Vasia Mitsou

- Bilinear RPV [arXiv:1109.6606]
 - $\tilde{\chi}_1^{\ 0}$ LSP not stable, decaying promply to a **muon and two jets**
 - analysis optimised for Rp conserving searches requiring exactly one muon and several jets
 - based on 1.04 fb⁻¹ of 2011 collision data
- Resonant sneutrino LSP [arXiv:1109.3089]
 - ν
 _τ LSP which can decay to an electron and a muon
 - search for excess in high eµ invariant mass
 - performed using 1.07 fb⁻¹ of 2011 collision data
- Displaced vertices [arXiv:1109.2242]
 → see Yuya Azuma's earlier talk

Bilinear RPV

- Bilinear R-parity violating (bRPV) terms in superpotential introduce neutrino masses and mixings in an natural way
- Hence RPV parameters constrained by neutrino measurements: Δm_{atm}^2 , Δm_{sol}^2 , $tan^2\theta_{atm}$, $tan^2\theta_{sol}$
- bRPV couplings embedded in mSUGRA
 - same cascade decay
 - LSP decays at the end
- Large variety of final states to explore
 - most of them involve leptons and taus
- Features high MET originating mainly from various LSP decays to neutrinos

Bilinear RPV: signal regions

Common event selection:

• exactly one isolated muon with $p_T > 20 \text{ GeV}$

See also Timo Müller's talk yesterday on MET+jets+leptons

 veto for events with at least one electron with p_T > 20 GeV, aimed at avoiding overlap with other analyses

Four signal regions requiring 3 or 4 jets with loose or tight cuts

Bilinear RPV: background

- Separate control regions for 3-jet & 4-jet selections
 - same lepton and jets requirements as in the corresponding signal region
- Final determination of background done through simultaneous likelihood fit of control regions to account for cross contamination
- MC simulation prediction of backgrounds in signal regions validated by checking additional control regions
- Possible contamination from atmospheric muons found to be negligible
- Background from single top and dibosons found to be small
- Systematic uncertainties: dominated by theoretical uncertainties (20 – 30%); rest less than 15%

Control region:	W+jets	Тор
$\Delta \phi(jet_i, E_T^{miss})$		> 0.2
m _T	40 GeV <	< m _T < 80 GeV
E_{T}^{miss}	30 GeV <	E _T ^{miss} < 80 GeV
M _{eff} [GeV]	> 500 (3	J) ; > 300 (4J)
#selected jets tagged as b-jets	0	≥ 1
$\frac{2}{9} 10^{6} \qquad ATLAS$ $\frac{2}{9} 10^{5} \qquad \int L dt = 1.04 \text{ fb}^{-1}$ $10^{4} \qquad Muo$ $10^{3} \qquad 10^{4} \qquad 10^{3}$ $10^{2} \qquad 10^{4} \qquad 10^{2}$ $10^{1} \qquad 10^{-1}$ $10^{-1} \qquad 2^{-1}$	n Channel	Data 2011 (\s=7 TeV) tandard Model nultijets (data estimate) +jets +jets Standard Model nultijets (data estimate) +jets ingle top Sibosons ISUGRA m _o =500 m _{1/2} =330 jets Control Region
0 0 200 400	600 800 100	00 1200 1400 1600 m[GeV]

Bilinear RPV: results

No excess of events observed!

95% CL exclusion limits in the 4JT SR for mSUGRA bRPV

eµ resonance: analysis

- Search for an excess in high eµ invariant mass
- Clean signal: look for exactly one isolated **electron** and $\lambda_{131}^{a} \times \lambda_{131}^{a} \times \lambda_{131}^{$

- Low SM background in the high m_{eu} region due to:
 - · processes which can produce electrons and muons in the final state
 - instrumental bkg: photons or jets in the final state reconstructed as leptons

1500 1 150
1580 ± 170
1180 ± 120
750 ± 60
380 ± 31
154 ± 16
82 ± 13
22.4 ± 2.3
2.48 ± 0.26
4150 ± 250
4053

eµ resonance: results

- 95% CL upper limits on σ(pp → ν_τ) × BR(ν_τ → eµ) as a function of m_ṽ
- Mass limits obtained are twice as high than previous ATLAS results using 35 pb⁻¹ of data [PRL106,251801,2011]
- Tau sneutrinos with a mass below 1.32 (1.45) TeV are excluded, assuming coupling values $\lambda'_{311} = 0.10 \& \lambda_{312} = 0.05 (\lambda'_{311} = 0.11 \& \lambda_{312} = 0.07)$
- 95% CL upper limits on the λ'_{311} couplings as a function of $m_{\tilde{v}}$ for three values of λ_{312}
- Limits on λ'_{311} are better than D0 results for sneutrino mass > 270 GeV assuming λ_{312} =0.07

eµ pair with highest $m_{e\mu}$ = 662 GeV

Vasia Mitsou

Conclusions

ATLAS results in searches for RPV SUSY presented

- good understanding of detector performance & physics objects have been demonstrated, which are essential for these analysis
- background processes well under control
- Limit setting for two different scenarios within RPV
 - sneutrino decaying to eµ resonances and bilinear RPV
 - no significant deviations from SM observed so far
 - exclusion limits set have been extended to wider parameter-space ranges
 - limits presented are the most stringent to date