Physics Lists

Gunter Folger Geant4 Review 2007

Physics lists task force

- Katsuya Amako
- John Apostolakis
- Gunter Folger
- Aatos Heikkinen
- Vladimir Ivantchenko
- Mikhail Kosov

- Michel Maire
- Barbara Mascialino
- Maria Grazia Pia
- Giovanni Santin
- Marc Verderi
- Dennis Herbert Wright

Contents

- Introduction
- Reference Physics lists
 - Configurations
 - Improvements
- Physics lists from examples

Introduction

Physics List is a set of consistent physics models for each particle in application

- Users need guidance or help
- Geant4 offers starting points
- Responsibility of application developer
 - To choose and, if needed, further develop
 - To validate for his use case

Physics modeling choices

- For EM physics, default set exists for standard EM
 - Low energy extensions
- Hadronic models only valid for specific energy range and specific particles
 - High energy: string models vs. parameterized
 - Medium/low energy: parameterized, cascade model, precompound model, data driven neutron transport model
 - Stopping particles: CHIPS, parameterized,
 - Elastic scattering
- Hadronic cross-sections
- Optical photons
- Neutrino physics

•

Why choice of models

- Nature is exact and fast
- Simulation is attempt to approximate nature
 - Geant4 offers choice in level of approximation versus CPU performance (e.g. options for multiple scattering)
- Not all physics is relevant in given simulation (e.g. neutrino physics)

Supported lists

- Geant4 provides physics lists with source code
 - Reference Physics lists
 - Previously called 'Educated Guess Physics Lists'
 - Examples
 - Advanced examples
 - Novice and extended examples
- Physics lists for specific communities, supported by SLAC
 - http://www.slac.stanford.edu/comp/physics/geant4/slac_physics_lists/G4_Physics_Lists.html

Reference Physics Lists

- Wide choice of physics lists offered
 - more than 20 lists
- Cover wide range of use cases
- All lists cover all primary and secondary particles up to high energies (>TeV)

Origin & Design

- 'Reference Physics lists'
 - created starting 2002 by HP
 Wellisch as 'Educated Guess
 Physics Lists'
- GeneralPhysics

 MuonPhysics

 PhysicsList

 PhysicsList

 PhysicsList

 PhysicsList

 EMPhysics

 EM_GNPhysics

 FM_GNPhysics

 G4EMBuilder

 G4ElectroNuclearBuilder

- Problem domain oriented
 - Covering 14 fields from HEP calorimetry to medical to low background experiments
 - Offering 21 physics lists
 - Web based guidance
 - Structured, re-use of common parts

Groups of lists – hadronic options

- LHEP using parameterized models
- QGS/FTF series replaces parameterized high energy model
 - theory driven string model used for pion, protons, neutrons, Kaons
 - Improved cross-sections
 - Better description for stopping particles using CHIPS modeling
 - Revised elastic scattering
- Variations for modeling at medium and low energies (e.g. QGSP_BIC)
 - Cascade model, precompound model, CHIPS, low energy neutron transport

Examples

- LHEP:
 - fast, for shower simulation in calorimeter
- QGSP_BERT_HP
 - Radiation background studies good modeling for neutron production and transport
- QGSC
 - Like QGSP with improved nuclear fragmentation
- FTFP
 - Alternative string model, under revision
- QGSP_EMV, LHEP_EMV
 - Providing faster multiple scattering similar to 7.1

Improvements in Reference PL

- Evolution of physics modeling
 - New developments offered in experimental lists first
 - Adopt mature improvements
- Change key options
- Solve configuration problem
 - Move physics lists into Geant4 source and build system
 - Integrates physics lists with Geant4
- Code cleanup and code migrations

New developments

- Alternative EM physics options
 - Default uses option for best physics in multiple scattering
 - EMV variants providing multiple scattering similar to 7.1
 - _EMX variants offer new developments (eXperimental) from EM
- GN used by default (8.0)
- Improved elastic scattering (8.1 & 8.2)
- Improved processes for capture at rest (8.1)
 - All lists based on QGS and FTF
- QGSC_EFLOW using energy flow nuclear fragmentation(8.2)
- Quasi-elastic scattering added to lists based string models (new)

Physics list moved to G4 source

- Integrate physics lists into Geant4 source code and build system, removes difficulties in using physics lists (8.2):
 - Avoid extra step to build physics list
 - Consistent environment, lists build by default
 - Simplified structure → only two libraries
 - One for 'lists', one for 'builders'
 - Libraries fully integrated with Geant4
 - No more problem to use granular/shared libraries
 - No need to misuse EXTRALIBS variable

Plans

- Improve Documentation
- Continue to provide new model developments
 - E.g. add quasi-elastic channel for string models
- Introduce new options as new (experimental) physics lists
- Adopt mature options

Advanced Examples: Physics Lists

- 17 (+4) advanced examples,
- Targeted for specific use case,
 - Quantitative validation for this use case, seven of these published
 - Space applications
 - Medical
 - Underground experiments, low background physics
- Selection of Physics model adapted to use case
 - Several examples have lists with EM only, and/or using
 - low energy extension for EM
 - Optical photons, Scintillation, Cherenkov radiation
 - Restricted set of hadronic physics (particles, energy)

Summary

- Reference Physics lists
 - User request for better integration in Geant4 implemented in 8.2
 - Structure has been improved with 8.0 and 8.1
 - Use standard builder for EM, remove TMP program
 - Improved or new models always made available
 - Gamma Nuclear is included by default
 - Improved elastic scattering
 - Revised stopping physics now using CHIPS model
- Advanced Examples physics list
 - Targeted to specific problems, often with validation

Backup slides.....

Cleanup: regrouping physics

Before 8.0

- EMPhysics
 - Optionally including gamma-nuclear
- GeneralPhysics
 - Decay unstable particles
- MuonPhysics
 - EM physics for muons and tau
 - Capture at rest for mu-
- IonPhysics
 - Ionisation, Mult. Scattering, elastic for
 D, T, He and generic Ion
 - No inelastic hadronic process
- HadronPhysics..xyz
 - Hadron Ineleastic

Since 8.0

- G4EmStandardPhysics
 - Standard EM physics list for all particles
 - Removes TMP file
- G4EmExtraPhysics
 - Synchroton Radiation & GN Physics
- G4DecayPhysics
- G4Hadron(Q)ElasticPhysics
 - Hadron Elastic scattering
- *G4(Q)StoppingPhysics*
 - Stopping Physics from LHEP or CHIPS
- G4IonPhysics
 - Hadron Inelastic for d, t, α
- HadronPhysics..xyz
 - Hadron Ineleastic

Updates in 8.0

- Use EM builder from EM standard
 - Removed template meta programming based class plist.tmp
- Gamma Nuclear physics enabled by default
 - Remove obsolete lists with gamma nuclear
- Added physics lists with 7.1 multiple scattering
 - QSQP_EMV and LHEP_EMV
- Added list for radiation studies
 - QGSP_BERT_HP

Revision of particles

Updates in 8.1

- Added list with more performant em options QGSP_EMX
- Introduce Chips modeling for stopping particles in all physics lists based on QGS and FTF.
 - Replaces capture processes for μ -, pi-, and K-
 - Replaces annihilation at rest for anti-proton and anti-neutron
- Updated elastic scattering in all physics lists based on QGS and FTF using improved multiple scattering
- Use Bertini for Kaons in BERT lists
- Use Binary for ions in BIC lists
- New experimental physics list QBBC, minimizing use of LHEP models

Updates in 8.2

- Integrate physics lists into Geant4 source code and build system
- Neutron tracking cut
- New lists
 - QGSC_EFLOW using new CHIPS energy flow
 - QGSC_EMV
 - QGSP_BIC_HP
 - QGSP_QEL variant using CHIPS systematics for elastic scattering
- Declare several lists obsolete
 - LHEP: _HP, _BIC, _BIC_HP, _PRECO, and QGSP_HP

Physics Lists supported by SLAC

- Four lists supported for specific communities
 - BaBar, medium energy vertex/tracker/calorimeter for B physics
 - GLAST, medium energy tracker/calorimeter for space applications
 - ILC, high energy tracker/calorimeter for colliders(ILC)
 - Space Electronics Physics List
- Simple and Fast Physics List for getting started
- Distributed and documented via web page
 - http://www.slac.stanford.edu/comp/physics/geant4/slac_physics_lists/G4_Physics_Lists.html
- No code re-use between different lists

Inventory of Reference PL

- LHEP
- LHEP_EMV
- LHEP_BERT
- LHEP_BERT_HP
- LHEP_BIC_HP
- LHEP BIC
- LHEP_HP
- LHEP_LEAD_HP
- LHEP_LEAD
- LHEP_PRECO_HP
- LHEP_PRECO
- LBE.
- FTFP
- FTFC

- \bullet QGSP
- QGSP_EMV
- QGSP_EMX
- QGSP_BERT
- QGSP_BERT_HP
- QGSP_BIC
- QGSP_BIC_HP
- QGSC
- QGSC_EFLOW
- QGSC_EMV
- QGSP_QEL
- QGSC_LEAD_HP
- QGSC_LEAD
- QGSP_HP
- QBBC