<u>HOM-based</u> <u>Beam Position Monitoring</u>

<u>Nicoleta Baboi</u>¹, Pei Zhang^{1,4}, Nathan Eddy², Hans-Walter Glock³, Thomas Flisgen³, Roger Jones⁴, Ian Shinton⁴

> ¹ DESY; ² FNAL; ³ Rostock University; ⁴ Cockcroft Institute/Manchester University

> > HOM issues in the ESS SC linac

Higher Order Modes (HOM)

• HOMs = fields excited by the beam in accelerating cavities

- Bad effect on beam, but also
- Can be used for beam (and cavity) diagnostics
 - Properties depend on accelerating cavity and beam properties

• Spectrum includes monopole, dipole, quadrupole etc. modes

Principle of HOM-BPMs

Dipole modes have linear dependence on beam offset and charge

\Rightarrow <u>Idea</u>: Use HOMs for beam position diagnostics (HOM-BPMs)

- Center beam (reduce wakes)
- Measure cavity misalignment

FLASH

• **TESLA** cavities

- 1.3 GHz
- 8 cavities / module
- 2 HOM couplers
- 3rd harmonics cavities
 - 3.9 GHz
 - Flattens RF field
 - 4 cavities / module
 - Built at Fermilab

Previous work: HOM-BPMs at TESLA cavities

Previous work: <u>HOM-BPMs at TESLA cavities (cont.)</u>

- Use SVD to process data
- Evaluate resolution by comparing to adjacent cavities
 - 5-10 μm rms
 - Problem with calibration stability
- Raw signals
 - Used during commissioning periods to center the beam

J. Frisch et al., EPAC 2006, TUYPA02, Edinburgh, Scottland

Previous Work: Cavity Alignment

HOM-BPMs for 3rd Harmonic Cavities

EuCARD WP 10 "Supercodnucting RF," Task 5 "HOM Distributions"

- Partially supporting our work
- Sub-tasks
 - 1: HOMBPMs
 - 2: HOMCD (HOM Cavity Diagnostics)
 - 3: HOMGD (HOM Distributions and Geometrical Dependencies)

EUCARD

1st Dipole Band in one 3rd Harmonic Cavity

- Practically all cavity modes above cut-off
 - Crowded spectrum
 - Modes: not possible to identify
 - Idea: cut one portion of spectrum (several modes)
- Alternatives:
 - Beam-pipe dipole modes
 - Trapped modes in 5th dipole passband

3 Options for Modes to be used as BPM

3 Options (cont.)

Dipole	Frequency	R/Q	Pros/Cons
passband	[GHz] (theor.)	[W/cm ²]	
Beam pipe	4.1486	0.24	Localized
	4.1487	1.31	Low R/Q ⇒ low BPM resolution
			Not in cavity
Cavity 1 st band	4.723	10.37	
	4.831	50.20	High R/Q
	4.926	30.38	\Rightarrow high BPM resolution
Cavity 2 nd band	5.444	20.88	Propagate in whole module
	5.470	16.07	
Cavity 5 th band	9.057	0.05	Localized
	9.059	0.07	Cavity-based
	9.062	2.17	Low R/Q
	9.070	4.04	\Rightarrow low BPM resolution

Electronics

- Built by Fermilab
- "Play"-electronics will be tested early next year

N. Baboi et al., SRF 2011, MOPO060, Chicago, IL, U.S.A.

Diode Based Signal Capturing

- Alternative electronics
 - · Already tested
- Simple setup:
 - **Broad-band filter**
 - to suppress strong 3.9GHz
 - +RF detector diode
- Signal-output ~ total HOM power

H.W. Glock, DIPAC2011, MOPD25

Diode Based Signal Capturing (cont.)

- Complicated analysis, SVD based
 - But it works

Comments and Outlook

- Did not mention simulations
 - Important for understanding the HOM behavior
 - Not discussed here (see talk by R.M. Jones)
 - Cockcroft Inst. / Univ. Manchester and the Univ. Rostock
- Will test options (localized, propagating) with electronics at the beginning of 2012
 - Then decide which modes to use for final electronics
- HOMBPMs for the European XFEL
- Replace/fix current HOMBPMs for the TESLA cavities at FLASH