MULTIPACTING ANALYSIS FOR THE SUPERCONDUCTING RF CAVITY HOM COUPLERS IN ESS

Rob Ainsworth

Royal Holloway
University of London

MULTIPACTING

Resonant process which lead to electron avalanche

- •Absorb RF power
- •Heating effects

Electron impacts on surface

- \bullet if δ > 1, secondary e⁻ emitted
- •**E** points towards surface

When happens, multipacting is barrier in rising in rising the acceleration \mathcal{M}

SEY is function of the impact energy *K* and depends on the surface cleanness.

COUPLER DESIGNS

Courtesy of R. Calaga Rescaled to 704MHz Original design by J. Sekutowicz

HW Glock and Rostock group

Royal Holloway
University of London

Rob Ainsworth

ACE3P

6 codes:

•Omega3P - Frequency domain •T3P - Time domain •S3P - S parameters **•Track3P** - Multipacting/dark current •PIC3P - Particle in cell •TEM3P - Multi-physics code

Curved elements for conformal meshing in combination with **higher-order basis functions** provide **high field solution accuracy**

Quadratic curved tetrahedral element with high-order vector basic function

Courtesy of Advanced Computations Department, SLAC

Royal Holloway
University of London

MP SIMULATION - ACE3P

Generate Mesh Find eigenmodes Omega3P

Track Particles through field Track3P

Postprocess find MP bands

GEOMETRY CLEANUP

Royal Holloway
University of London

Rob Ainsworth

MESH GENERATION - CUBIT

2 cells initially used however CPU time depends on localised mesh density not total

> Kept 2 cells for consistency

Royal Holloway
University of London

OMEGA3P SIMULATION

Order p=2 used: In each element, fields are expanded into 20 vector basis functions (6 for $p=1, 216$ for $p=6$)

Tracking uses π mode (704.42MHz)

Cavity is included in order to calculate field gradient

Monday, 26 September 2011

TRACK3P - SIMULATION

Define bounding box for emission

Particles emitted from centre of mesh elements within box

Occurs every 3.6° for 1 RF cycle

Particles tracked for a further 19 RF cycles

Rob Ainsworth

RE-EMISSION MODEL

Note: 20RF cycles means cannot resolve trajectories higher than 5th order

CALAGA DESIGN

IMPACT VS GRADIENT

Monday, 26 September 2011

ENHANCED COUNTER

 \sum *i SEYⁱ*

Normalised by total initial charge

Monday, 26 September 2011

Royal Holloway
University of London

1.6MV/M

Royal Holloway
University of London

ROSTOCK DESIGN

Again ~100,000 particles tracked overall

> Majority of impacts between wall and capacitive plate

Small activity elsewhere

Royal Holloway
University of London

IMPACT VS GRADIENT

ENHANCED COUNTER

One very strong band

2 point between wall and capacitive plate

Royal Holloway
University of London

0.4MV/M

18

COMPARISON

Rostock

One strong but narrow band

Calaga

lower but extends across a broader range of gradients

Monday, 26 September 2011

Royal Holloway
University of London

IMPROVEMENTS

Monday, 26 September 2011

Rob Ainsworth

OPEN QUESTIONS

Can we know if a barrier can be processed?

Is normalising the counter by initial charge the best way to compare the two designs?

Is tracking for 20 RF cycles (5th order resolution) sufficient?

CONCLUSIONS

Appears to be safest design so far ...

Calaga design Rostock design

One strong band is the main worry

Plans for modification to reduce MP activity

If we could be sure it could be processed, then the initial conclusion may reverse

Royal Holloway
University of London