4> HOMs in ESS Cauvities:

The Cockcroft Institute

~ Spoke and Elliptical Work Propos

Roger M. Jones, Univ. Manchester/Cockcroft Inst.
Wakefields and HOM beam dynamics for ILC and XFEL
SC cavity high gradient optimisation
Main linac e.m. field and beam electrodynamics
HOM measurements/diagnostics at FLASH (FP7)

2. HIE-ISOLDE —Collaboration with CERN colleagues on LINAC—
component of upgrade to REX-ISOLDE

3. Application to ESS cavities
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s | K Membership

The United Kingdom will be the 17th country to join the European Spallation
Source project. The UK was welcomed today at a meeting in Bilbao, Spain, by
representatives from the current 16 Partner Countries.

- | am particularly happy that the UK now joins the
project. The UK has a large and strong neutron
research community, that will now be able to benefit
from the opportunities that ESS can give, says Colin
Carlile, the ESS Director-General. There is a vast
knowledge of the necessary technology for building a
spallation neutron source from the ion source to the
instruments in the UK and there will be mutual benefits.
(source ESS news 15" April 2011)
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s Verview

» Focus of u (Microwave Electrodynamics and Wakefields)
group is on SC and NC cavities -with some other activities.

»SC cavities, frequency range ~ 1.3 GHz (XFEL/ILC) ,
3.9 GHz (FLASH), 101 MHz (HIE-ISOLDE).

»ESS spoke and 704 MHz elliptical cavities

»\We investigate wakefields/impedances, HOM damping,
maximising gradient, computational methods.
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1. ILC High Gradient Cavities and

FLASH/XFEL Third Harmonic
Cavities

Roger M. Jones
s Cockcroft Institute and $ 20—
= ',=™ The University of Manchester Wse ‘
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»Roger M. Jones (Univ. of Manchester faculty)

»lan Shinton (Univ. of Manchester PDRA based at Cockcroft
—April 2009, 100%0)

» Nawin Juntong (Ph.D. student, 100%0)

» Chris Glasman (Ph.D. student, 100%0)

»Part of EuCard ( European Coordination Task Leader for
Accelerator Research and Development) FP7 SCLinac Task
10.5. Three associated sub-tasks.

i l : C1/Univ. of Manchester PDRA I.
Shinton (left) and Ph.D. student

| N. Juntong (right; supported by the

| Royal Thai Government and Thai
Synchrotron Light Source)

»EUCARD FP7 WP 10.5 Members:
R.M. Jones, N. Baboi (DESY), U. Van Rienen (Univ. Rostock)
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Two Main Parts:

1.0 Introduction to Globalised Scattering Techniques

1.1 ILC High Gradient Cavities *: New Low Surface
Field Design
-exploration of large parameter space

1.2 Third Harmonic Cavities at FLASH/XFEL —entails
intensive simulations and construction of HOM
diagnostics

*Detailed beam dynamics simulations by Glasman et al. on several alternative high gradient designs
have also been conducted, but skipped here due to time constraints!

Refs:
1. Juntong et al, PAC09, SRF2009
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1.0 Introduction to Globalised

Scattering Techniques

» Simulation of Higher Order Modes (HOMS) iIn
high gradient cavities

Utilise 3D codes: GdfidL, HFSS, ACE3P suite
Use 2D codes, ABCI, Echo2D for bulk of cavity
structures.

» Develop interface that cascades given sections to
make more efficient calculations of overall fields.
Focus on:

Re-entrant -Cornell Univ. design

. Low-loss (Ichiro variant) -KEK design.

3 Z.Lyvs rede51gn
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<i:> 1.0 Cascaded Computation of EM
Fields and Dispersion Relations

of Accelerator Science and T¢l

S, = 2(U + Zatvya) ' Zaty e

_Field cale, from s Hatrix AFSS 9-Cell Simulation o, o1 distribution at
I IO interface enables rapid
— = = S determination of fields
A TR _Cascaded Single-Cell E, and potentially trapped
R Reson o ol modes
i »Fields obtained from
T HFSS single cells cascaded
L 2%, (Xah) Jp— » Dispersion Calculations via GSM
" Noet -, —"=  enables efficient characterisation of

o -
—a | —q cavities
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»Bethe hole perturbation coupling
formulation investigated for X-band
structures. Good agreement for a limited
See Shinton and Jones,:%o w6 % % o w0 o w cells (thln Iris approx)
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¢> 1.0 HOM s studies for ILC ACD

of Accelerator Science a

Ichiro Cavity
fabricated at KEK
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See Glasman, Jones et al.
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» EXxplore parameter regions for
NLSF cavity with an iris range

of 30 to 33 mm (whilst the iris
thickness is varied).

» The parameter regions for an
Iris of 32 mm is shown.

NLSF shape

1.1 NLSF Design

Red- Bs/Ea, Blue- Es/Ea, Black- k;
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1.1 NLSF Design - Bandwidth
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1.1 NLSF Design

—Overall Surface Fields

»Earlier alternate designs were limited by field emission which
occurred in the end cells.

»HFSS simulations indicate that NLSF cavity does not suffer from this
problem.

Surface Magnetic Field/Accel. Field Surface Electric Field/Accel. Field
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1.1 HOM Propertles of NLSF CaV1ty

»Higher order multipoles
Investigated for full 9-cell
cavity

»Dipoles modes will
dominate emittance
dilution

» Corresponding
transverse momentum
kicks studied by
calculating R/Qs.

»Similar, although
redistributed R/Qs as
TESLA shape

» Modify HOM couplers
(no problems anticipated!)

14 R.M. Jones, ESS RF Wo
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1.2 HOM DIAGNOSTICS IN

THIRD HARMONIC CAVITIES AT
FLASH

Roger M. Jones
University of Manchester/ Cockcroft Inst.

MANCH le 1l'ER_



http://www.desy.de/
http://www.desy.de/

1.2 Task 10.5 HOM Diagnostic in 3"

Harmonic Cavities at FLASH

TASK 10.5 HOM Distribution

Sub-Task Name Coordinating
Institute/Univ.
10.5.1 HOMBPM DESY
10.5.2 HOMCD Cockcroft/Univ.
Manchester
10.5.3 HOMGD Univ. Rostock

> 10.5.1 HOM based Beam Position Monitors (HOMBPM)
> 10.5.2 HOM based Cavity Diagnostics (HOMCD)
> 10.5.3 HOM based Geometrical Dependancy (HOMGD)

» All pool together to ensure success of instrumentation of diagnostics for
FLASH cavities.
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1.2 HOM Diagnostic in 3" Harmonic

Cavities at FLASH -Staff

» Sub-task leaders: Nicoleta Baboi (DESY), Ursula van Rienen
(Univ. Rostock), Roger M. Jones (Cl/Univ. Manchester).
»PDRAs: Hans-Walter Glock (Univ. Rostock), lan Shinton
(C1/Univ. of Manchester)

»Ph.Ds: Nawin Juntong (CI/Univ. Manchester), Pei Zhang

(DESY/Univ. Manchester/Cl), Thomas Flisgen (Univ. Rostock)
WP 10.5.2 WP 10.5.3 WP 10.5.1

H-W Glock, Univ. of ~ :
Rostock, PDRA U.Van Rienen, N Baboi, DESY
- Univ. of Rostock L3

C. Glasman, Cl/Univ. of
Manchester PhD student
(PT on FP7)

N. Juntong, Cl/Univ. of

:\hizgr]]teos?éf ;»%JSX of Manchester PhD student | |
(PT on FP7) T. Flisgen ,Univ. of P, Zhang, DESY/Univ.

17 R.M. Jones, ESS RF Workshop, Lund, SwedenRe§i0ghnd - 23rd 2011 Of Manchester




1.2 3.9 GHz Module Installed at FLASH

EMA=

TESLA Cryo-Module (ACC1)
8 x 9-Cell 1.3 GHz Cavities

'Y ~ o \\ ‘,‘ g
- \¢
E | \
— \
v Ve A
3 S

photo &
drawing
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4 x 9-Cell 3.9 GHz Cavities FNAL
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1.2 HOM Diagnostic in 3" Harmonic

Cavities at FLASH

» Fermilab has constructed a third
harmonic accelerating (3.9GH2z2)
superconducting module and cryostat for a
new generation high brightness photo-
Injector. 9

» This system compensates the nonlinear
distortion of the longitudinal phase space
due to the RF curvature of the 1.3 GHz
TESLA cavities prior to bunch
compression.

» The cryomodule, consisting of four 3.9GHz cavities, have been installed in the
FLASH photoinjector downstream, of the first 1.3 GHz cryomodule (consisting
of 8 cavities).

»Four 3.9 GHz cavities provide the energy modulation, ~20 MV, needed for
compensation.

19 R.M. Jones, ESS RF Workshop, Lund, Sweden, Sept. 22nd - 2374, 2011




1.2 Third Harmonic Parameters

of Accelerator Science and Technology

Ilustrative energy (not to scale)

Number of Cavities 4 . . I R

. »Adding harmonic ensures the 13GHz only
Active Length 0346 meter | ond derivative at the max is zero _ i s o | wonl
Gradient 14 MV/m for total field (could use any of 5 N
Phase -179° the harmonics in the expansion,
RIQ [ZU2(WW)] 750 Q but using the lowest freq. Ry
EoalEne 526 ensures the transversg o e e ‘

wakefields ~ @3 are minimised). &= e w® = W TE
Bpea 68 mT _ _ FLASH linac with 3rd harmonic rf
(Eaee = 14 MV/m) » The third harmonic system 4MeV  130MeV  380MeV 1000 MeV
. 3.3mm ~250 um 10um

9 13X 108 (3.9GHz) will compensate the 65A 2.5kA

t ' . . - "

— nonlinear distortion of the . collmator
BBU Limit for <1 X10° . : e
HOM, Q Iongltuo_lmal phase space due to
Total Energy 20 MeV/ cosine-like voltage curvature of
1.3 GHz cavities.

Beam Current 9 mA
Forward Power, % kWY C>l_lt I !tr)]ea_rlses the energ)]: i
per cavity blstrlh ution upstrearr]n of the
Coupler Power, 45 kW f ur_ll(? C_OmpI’ESSOIiI'[ Us lized
per coupler acilitating a small normalize

emittance ~1.10 m*rad.
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S CAEMAatic o
International Linear e s
Collider (ILC)

http://www.linearcollider.org

Used at
XFEL and
FLASH.
Baseline
design for
main
accelerators
in ILC.

Used at

XFEL and
FLASH in
order to

flatten the
field profile
and reduce

energy
spread.

1.2 HOMSs In SCRF Cavities
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1.2 Minimising Emittance Dilution and

HOMBPMSs

» Source of Emittance Dilution
—W,, transverse wakefields (W,~ a3 —a iris aperture)

—Much stronger in 3.9 GHz than in 1.3 GHz cavities (each
Iris is r ~ 15 mm compared to 35 mm for TESLA).

» Utilise Wakefields as Diagnostic
—Sample HOMs to ascertain beam position (HOMBPM).

—Move beam to minimise impact on itself and to align to
electrical axis.

— Can also be used for measuring beam charge, phase etc.

22 R.M. Jones, ESS RF Workshop, Lund, Sweden, Sept. 22nd - 23rd, 2011



1.2 HOMSs In SCRF Cavities

of Accelerator Science and Technology

* Higher order modes (HOMs) are excited by charge particles in cavity

- influence the beam both longitudinally and transversely
- non-monopole modes excited by off-axis particles effect bunch itself (intra) and
subsequent (inter) bunches

* Dipole modes dominate transverse wake potentials

Dipole vs. Quadrupole
1 T T T

——Dipole

m
. r . 091 —Quadrupole
(Amplitude) ~W," ~ (j r:beamoffset |
a a: iris radius

m=1, dipole; m=2, quadrupole

o o =} =}
o o ~
T T T

plitude (Normalized)

« Use HOMs (non-monopole moges) to

. Ragion of o)
-allgn the beam to the el?l%&? gtlc e Cf 2z o 04 ;)/.‘; 06 07 08 09 1

- monitor beam position (HOM-B

Earlier work on 1.3 GHz demonstrated the principle
[1] G. Devanz et al., EPAC2002, WEAGB003

[2] N. Baboi et al., LINAC2004, MOP3
23 R.M. Jones, ESS RF Workshop, Lund, Sweden, Sept. 22nd - 2374, 2011



1.2 HOMSs in SCRF Cavities

« Task:
— Develop, build, test electronics for 3.9 GHz cavities
— Interpret signals and integrate in control system
— Measure cavity alignment

« HOM-couplers HOM-couplers (pick-ups)
— Atend of each cavity =~ ™= =
— Enable monitoring the D, l
HOMs excited by beam | [z -

TESLA cavity lllustrated
(similar features present in 3.9 GHz cavity)

24 R.M. Jones, ESS RF Workshop, Lund, Sweden, Sept. 22nd - 2374, 2011



¢> (bunch compressors| \
[ bypass Iine]

@unpiott nstte / \
% AN T [ T\ Erhean)
ACC39 ‘; fgaé’gizeiﬂ \C')Vétln': (collimator section)
5 accelerating modules dump
\ [ With 8 cavities eaCh] -1.3GHz SC, typically 450-700MeV, 1 nC charge for FLASH/X,EEL

*HOMs generated in accelerating cavities must be damped.

*Monitored HOMs facilitate beam/cavity info
* Forty cavities exist at FLASH.

-Couplers/cables already exist.

-Electronics enable monitoring of HOMs (wideband and narrowband response).

Based on 1.3 GHz
dh  (CEA/SLAC/FNAL/DESY)
a4 Diagnostics —redesigned for

ACC39 as part of EuCARD

(rotated by 65)
Yol I\, VVVUI NJI IU'J LuUliu,; WVVCuTlly, \)\4|J . Lo T aJ 2011




1.2 Response of HOM to Beam

HOM Probe Efc))[l\)ﬂe glr:ive .%4".
I —
- -
—. Bunch excites

> HOM modes
I Dipole mode: Amplitude proportional to bunch transverse position
Phase determined by bunch arrival time for position offset

Monopole mode: Amplitude first order independent of beam position HOM
Phase of mode determined by bunch arrival time Probe

—- —-

—— —

Whase
-
+phase i — E—

Beam at an angle will excite dipole mode with 90 degree phase shift
relative to signal from position offset
Amplitude proportional to angle X effective mode length (~ 1 Meter)

—
—_—
—-
-
by
-

Tilted bunch will also excite signal at 90 degrees, amplitude proportional
to bunch length and tilt: Not significant for short TTF bunches

Dipole Modes: Each mode has 2 polarizations
Frequencies degenerate for ideal cavities
Frequency degeneracy broken by power coupler and fabrication errors

If frequency splitting is < line width, Need both couplers to separate polarizations

26 R.M. Jones, ESS RF Workshop, Lund, Sweden, Sept. 22nd - 23rd, 2011



1.2 Extant Work at 1.3 GHz:

HOM-BPMs in TESLA Cavities

HOM-BPMs at 1.3GHz cavities

From HOM | Bandpass

— Use dipole mode at 1.7 GHz Pt T e ] e
— Installed in 5 accelerating TE111-6 ! m;th
- i 4

modules (40 cavities) Ho el clock

— Calibration: with SVD technique
« problem: unstable in time
Beam Alignment in Modules
— Now routinely used in FLASH

Other studies

— Cavity alignment in cryo-module
— Beam phase measurement with monopole modes at ~2.4GHz

XFEL Plans:
— Install in some 1.3 GHz and in all 3.9 GHz cavities

Digitiser Output / bits

27 R.M. Jones, ESS RF Workshop, Lund, Sweden, Sept. 22nd - 2374, 2011



1.2 Analysis of Narrowband Signals —

Beam Position (Previous 1.3 GHz Study)

* Resolution of position
measurement.

— Predict the position at cavity
5 from the measurements at
cavities 4 and 6.

— Compare with the measur

0.02 0.04

0
Residual / mm

value. N
« X resolution
— ~9um ?l
* Y resolution o,
— ~4 pm — st

-0.?)15 -0.01 -0.005 0 0.005 0.01 0.015
Residual / mm
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1.2 FLASH and ACC39

Free-electron LASer in Hamburg (FLASH)

RF
RF Gun Bunch Bunch Stations
Compressor v Compressor v v
i—l\ ) s s
rd  Diagnos-
Laser hparmonic tics Accelerating Structures
Experi t
5 MeV 130 MeV 470 MeV 1.2 GeV xperiments
- 315 m >

’ AV
i l = SRl o
W‘E}a

C“|2

Beam direction

| TESLA cavity (1.3GHz) |11

,«4;%5[1.7

; l nﬁ ﬂ n. n' u. il Onxln fl

Photo courtesy E. Vogel & DESY
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1.2 Selected Highlights

»S-matrix measurements and comparison with simulations.
« Transmission measurements.

e Multi-cavity modes.

»Beam-based mode characterisation.

« HOM pickup vs beam offset for trapped/isolated modes

» Comparison of analysis of data

« Direct Linear Regression (DLR) vs Singular Value
Decomposition (SVD)

30 R.M. Jones, ESS RF Workshop, Lund, Sweden, Sept. 22nd - 2374, 2011



1.2 Measurement Programme
(since last SRF WP10 review meeting)

m Measurement info Beam info

Apr. 2010 Transmission measurement w/o beam
Jul. 2010 15t parasitic measurement w/ beam
Nov. 2010 2"d parasitic measurement w/ beam
Jan. 2011 15t dedicated measurement w/ beam
Feb. 2011 Multi-bunch measurement w/ beam
Mar. 2011 2" dedicated measurement w/ beam
Apr. 2011 Transmission measurement w/o beam

May 2011 Mini measurement w/ beam

31 R.M. Jones, ESS RF Workshop, Lund, Sweden, Sept. 22nd - 2374, 2011



1.2 ACC39 Spectra Measured in CMTB:

Focused on Dipole and Other Bands

Measurements made at CMTB

60 .............................

40 ............................

$21 [dB]

-20

Transmission matrix
measurements made h

-40 B ==Y R A lomgm Cav. 1 (F3,

onall 4 CaVItleS ----- Cav. 2 (F3,

= Cav. 3 (F3,

within ACC39. |~ &2 RINESE

 Center 1.7 GHz
4000 4200 f [MHz] 2 #Res BW 18 kHz WBW 18 kHz
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1.2 Band Structure

Monopole Firsttwo dipole bands Beampipe modes Quadrupole 0 5th dip0|e band

\
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1.2 S,, Exp vs Simulations

Comparison Measurement and Simulation I

/ S Cable, Meas

n AL A ﬁ -"1 I
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5' Comparison Measurement and Simulation II
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1.2 Beam-Based HOM Measurements

/ BPMs *Not to scale
Electron ACC1 Module ACC39 Module
Bunch

5 <L

Steerlng Magnets ~145 MeV

HOM Couplers

Upstream BPM (21P)

S T N . ..............
: Y : 5
........ ’; ............. ............. ........... | Upstream BPM (57P)
EE TN TR P s , , g , ,
* 4 ................. — R o §A. .................
...................................... .. S S S g e : %
.................................. 0000 T OO Y B W P it U
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1.2 HOM Signal (15t Two Dipole Bands)

= 4| ——C1H1 ||
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< »> Time
50 Domain
= HOM pickup
=
< -1
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= \ \ . Wl FFT of HOM
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| ‘ I
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1.2 1%t Dipole Beampipe Modes

15t Dipole Beampipe Passband (C2H2) (Xmove) <10* Real-time Spectra < 10% Real-time Spectra
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1.2 5t Dipole Cavity Band

of Accelerator Science and Technology

5th Dipole Band' f(GHz)| R/Q
C2H2-D5Xmo (11 spectra)
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1.2 Comparison of DLR vs SVD

of Acceleratnr Seinnen and Tachnalany

Total Sample (C3H2)(57P) 1
el Specfrum

A=

N
spectruim

\S‘VD

Singular
Vectors

ﬁR
v

LJnt nt

X M

DLR

B=

, , 5.1 : :
2"d dipole cavity band FESHIEREY {2 ot
Ay N

* Direct Linear Regression (DLR)  Singular Value Decomposition (SVD)
T
A-M+B,=B A=U-S-V' — A

A, -M;+B,; =B
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1.2 Direct Linear Regression

of Accelerator Science and Technology

40

10 5.2
2"d dipole cavity band 5.1 Frequency (GH

* Direct Linear Regression (DLR)

A-M +B, =B

A spectra matrix
B: beam position matrix

R.M. Jones, ESS RF Workshop, Lund
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1.2 Singular Value Decompostion

and Tarhantanu

of Accelerator Saianna
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1.2 Concluding Remarks on HOM

Third Harmonic Cavities

» ACC39, has been received by DESY, characterised at the CMTF, and
subsequently installed at FLASH.

» Beam tubes connecting cavities are above cut-off and allows for strong coupling
between all 4 cavities —suite of simulations being used to characterise the coupling
and sensitivity to geometrical perturbations.

> Experiments indicate trapped modes in 5t" band (~ 9GHZz) and expected linear
dependence. Mode candidate for diagnostics? First systematic comparison of DLR
vs SVD indicates consistent behaviour. (other candidates are based on modes
which exist in the beampipe and stretch over the complete module)

» HOM electronics will be tested for 3.9 GHZ cavities in 2012.

» Good overall progress!
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1.2 HOMSs In SC Accelerator Cavities

»EXxperience gained on FLASH
measurements will be invaluable.
»HOMs in ALICE TESLA cavities
will provide information on:

» 1. Beam position (effectively a
built-in BPM)

»2. Alignment of cells (and groups
thereof).

&

______

| FEL Optical Cavity (9.224 m) | [ Sab Mognets
.| 10 Dipoies

17 Quadmupcies
rms bunch length ~0.6ps ALK

energy spread <0.2% I New Magnets
9 Dipcles

2
e / 26 Quadupoles

L \ ’ 4 Sextupoies

AW 390t
~ 4

Laser ' Diagnostics
Room Room

Stage | Modules (llob mognets) ; 4.6,8,14.15,16,17,19 & 20

Stage 2 Modules (new magnels) ; 1,2,3,7,9.10,11,12.13
21,2223,24, 25826

Stage 3 Module (Wiggier): 18

Schematic illustrating ALICE”
P \. | E B

Cl/Univ. of Manchester PDRA I.
Shinton (left) and Ph.D. student N.
Juntong (right; supported by the Thai
Government) participated in ALICE
commissioning in Dec 2008
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Concluding Remarks on SCRF

»New Low Surface Field (NLSF) Design has the potential to
reach in excess of 50 MV/m -all three parameters optimised!

» Third harmonic cavities received by DESY, characterised at
the CMTF, beam-based tests ongoing.

» Strong coupling of cavity modes within module ACC39 —suite
of simulations in progress to assess mode for electronics
diagnostics.

»HOM electronics will be built designed and tested for 3.9 GHZ
cavities in 2012.

»HOM simulations on cavity alignment/beam based alignment
In progress for third harmonic cavities.
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Isotope Separation
On-Line (ISOL)

2. HIE-ISOLDE

High Intensity and Energy at ISOLDE
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O M. Fraser, Univ. Manchester/Cockcroft Inst. PhD student, Leads Beam Dynamics Work
O Alessandro D’Elia, Univ. Manchester/Cockcroft Inst. , Leads RF Cavity Design




4> 2. HIE-LINAC

The Cockcroft Institute

of Accelerator Science and Technology

Existing Existing . . . .
qiTIe IH-structure T & 9-gap gl gl s Lglrs
300 kel 1.2 Wleliy l 2.8 Mei 4.5 Wled iy 6 Meliy & Meliy 10 ey
£ ™
low- low-8 HIE-LINAC Upgrade

Energy — provided by the HIE-LINAC (superconducting machine providing full energy
variability from 1.2 Mev/u to over 10 MeV/u)

cavity”  41E-1SOLDE project aim:

loweg - '” l‘ I. solenoid To upgrade _the current ISOLDE nuclear resegrch faci!ity in three
: key ways, with a focus on post-accelerated radioactive ion beams

(RIB):
Diagnostic box 1. Intensity (upgrade of proton driver to 10 kW through
linac4) — R&D is required for the production target.
2. Quality (improved isotope selection using laser ionisation,
high-6 | ﬂ' ! improved charge breeding, cooling and accumulation stages
prior to post-acceleration).

Cryo-Module Schematic

Focussed on the cavity rf and beam dynamics design for the HIE-LINAC including:
1. Afirst-order beam dynamics study of the whole linac.
2. Arrealistic field beam dynamics study of the high-energy section of the HIE-LINAC.
3. Single particle dynamics study in QWR to investigate the effects of beam steering
and transverse field asymmetry intrinsic to the cavity.
4. Compensation of field asymmetry by geometric modifications to the cavity.

5. Error and misalignment study.
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4>

The Cockcroft Institute
of Accelerator Science and Technology

WP3: Cavity RF and Beam Dynamics
High-p cavity RF Design Transit Factor

I -
f (MHz) 101.28 LOW-B H |gh_B
Inner Cond. Diam (mm) 90 02001 -
Outer Cond Diam (mm) 300
g. 550
Mechanical Length (mm) 320 B
m
Gap length (mm) 85 3.800
£
Beam Apert. Diam. (mm) 20 s
U/Ea2 (mI/[(MV/m))> 207 2-7%°
m
“
Ep/Ea >0 B. 700
Hp/Ea (Oe/MV/m) 100.7
Rsh/Q (Ohm) 548 0.650
QO0 min for 6 MV/m at 7W 5x108
TTF max 0.9 0. 000
Bo 10.3% - ol
Design Gradient E,.. (MV/m) 6 E 005
Number of cavities 20 Z 0
Sb -0.05 —&—NOM
2 —6—RT
g 0l —&— MOD DT
z
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lerator Science and Technology

summary

» SC cavities will facilitate the provision of variable-energy beams
of exotic ions with concomitant improvement in beam quality.

» Nb sputtered onto Cu quarter-wave cavities have the potential to
radically reduce costs and serve as a technological base for future
accelerators. Prototype high-B cavity built and sputtered, tested
at TRIUMF. Re-sputtered and in tests at CERN

» RF cavity and beam dynamics studies to both design the overall
system and to perform “cradle to grave” simulations —
Improvements beam port designs completed

» Influence of transverse kicks to the beam has been investigated
utilising state-of-the art beam dynamics RF computer codes
(LANA and others).
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r 3. HOM Studies on ESS Cavities

The Cq
of AccHE—_—
f LEBT RFQ | MEBT [ ort L[ spoke L4 High L Upgrade and
’ e ™ 1.6m /ﬂ 2,5m ™| 19m [ sm & | 2i5m | HesTi00m T ovE®t
1T 1
7SkeV 3MeV 50MeV 200M8 doMev 2500MeV

”

_— g~ > %

27m : 325m i 100m

vV

Schematic of ESS

> Initially focus on the low B end of ESS, which has ~15 modules with 4 cavities per module.
After HOM studies on this section have been made investigation of the high g end of ESS
will be made, followed by a concatenation of the results.

»ESS cavity geometry unavailable — conduct some preliminary studies with dimensions
taken from different cavity (2001 ASH cells). Objective: HOM’s in a high intensity proton

machine
»Focused on looking at low beta ASH

N\
VAR =N B=0.65

ond | mmer | rizkN | leftend | imner | Right (Superconducting Accelerator for Hybrid)
cell cell | endce cell call | end cell H
T 0 TS0 T 00 V500 00T 700 cell geometry [J-L Biarrotte et al.,” 704
DI (mam) 187.0 187.0 187.0 1864 | 1864 | 1864 1 111 1
_,L(gm;] 30 | 335 | See I\ e | B N !\/lHZ syperconductmg cavities for a high
B Emmil 0| T | 386 (1495 a1 530 intensity proton accelerator”, Proc. of
By onen) 104 | 103 | 87 |[159 | 158 | 148 SRF99, Santa-Fe, NM, 1999.], as a
a(™) 598 5.5 484 BES BS 5.6 . . . ..
Riris(mm) \ 400 | 400 | 650 J 450 | 450 | 650 precursor investigating ESS cavities.
Nb thickness
(n::n) 4 [with stiffering) 4 (no sHffening)

tabls I : W—Mimﬂ cavities.
I.R.R. Shinton
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&
1
The Cf

of AccHE—_—

»Major difference between electron and low
to medium B cavity is of course the charged
particles are not ultra-relativistic (v<c)

» The major consequence of this is the usual
modal formula —summation over discrete
modes —needs modification to take into
account the velocity variation and to make use
of the characteristic pancake shape of the
transverse field. The wakefield peers ahead,
as well as behind, the bunches

3. HOM Studies on ESS Cauvities

»Needs to be incorporated into beam
dynamics studies |

B<1 ’
AT

N
RIAS

Envelope of Transverse Wakefield
R.M. Jones, ESS RF Workshop, Lund, Sweden, Sept. 22nd - 2374, 2011




3. HOM Characterisation

of 704 MHz Cavities

» Initial results will involve simulations with HFSS of an idealised cavity, this results will give
an overview for any potentially harmful HOMs

rrrrrrrrrrrrrrrr

Slice ed to simulate Qua/cell used ST e s g
monopole modes to simulate dipole modes Monopole Dipole and Sextupole

» Simulations capitalise scalable properties of Omega3P (part of ACE3P suite) to simulate a
series of cavity strings will be used to investigate the effects of HOM'’s including trapped
modes and multi-cavity modes (above the beam-pipe cut-off) that propagate throughout
the entire structure (work in progress!)
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3. HOM Characterisation of 704 MHz Cavities

e EM | Band
Hz
L . 696.4 | 1
. 698.9 | 1
). 701.7 |1
L_“;r‘e‘_ 7039 |1
08888 704.8 | 1
F:GH | Band
z
__REpRE 1.540 | 2
—ARREA 1.548 | 2
_AOARA 2.250 | 2
A0 2.258 | 2
__DRARE 2.270 | 2

|I.R.R. Shinton

.Jones, ESS KF WOrKsnop,

F:GH | Band
Z
—A000A.. 2.250 | 3
—AA00A . 2.260 | 3
ARADE 2.270 | 3
_ARAAR 2.282 | 3
_AGRAS 2.294 | 3

> All monopole bands below 2" are
below cut-off of the power coupler
beam-pipe

»Simulations performed with
eigenmode module of HFSS

Monopole bands
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3. HOM Characterisation of 704 MHz Cavities

“The first dipole band is F:GH | Band
localised within the cavity 7
1.025 |1
1.032 |1
1.040 | 1
1.047 |1
All dipole bands above 2nd | £-GH | Band
are above cut-off of the '
power coupler beam-pipe z
__AAMAR 1546 |2
T 1.570 | 2
_AApAR. 1.628 | 2
_ABAAL.. 1.702 | 2
ApRAR 1.765 | 2

.Jones, ESS KF WOrKsnop,

F:GH | Band
YA
1.868 | 4
__BeAgs 1.871 | 4
__PARpR 18754
__APAAR 1.883 | 4
F:GH | Band
Z
0. |2292]5
__DAdeA.. 2.302 | 5
_ pAMAR..  |2324]5
D000 23345
Selected Dipole Bands
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3. HOM Characterisation of 704 MHz Cavities

The Cockcroft Institute
of Accelera l

lerator Science and Technology

»Preliminary study of multi-cavity modes using the Omega3P frequency
domain solver of the ACE3P suite

» Additional full module simulations and strings of modules in progress (in
NERSC job queue!)

I.R.R. Shinton

»Example of a diple
mode at ~1.76378GHz
In the second dipole
band

»Frequency shift
from idealised single
cavity values due to
propagation through
power coupler beam-

pipe

Simulations of Coupled
Four-Cavity Module with
OMEGAS3P (part of ACE3P
Suite)
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Summary

»1. HOM characterisation of cavity wake-fields and beam dynamics for
ILC/XFEL. Globalised scattering technique provides a unique method to
enable trapped modes in modules to be probed.

» 1. HOMs as BPM diagnostic for ILC/XFEL: FP7 as part of
DESY/Cockcroft/Univs Manchester & Rostock collaboration. Participating
In exp program at FLASH/DESY. EuCARD FP7, R.M. Jones, Task Leader

»2. HIE-ISOLDE energy upgrade ongoing. Protoype quarter wave cavity
built (inc. tuners). Well-reviewed by recent intl. committee. Ph.D. student —
beam dynamics simulations, PDRA —cavity/coupler/tuner design. Sputtered
cavity tested at TRIUMF,VA. Re-sputtered being tested at CERN.

»3. HOM:s in spoke and elliptical cavities will be analysed and means to
provide sufficient Q damping suggested.

O Both isolated and multi-cavity modes will be simulated and analysed.

O HOM as diagnostic BPMs could be advantageous in these cavities also.

O Anticipate exchange of information, on both sets of cavity structures, from our
European and international collaborators!
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®J £SS HOMs -Summary Cont.

The'Cockcroft
among the HOMSs generated.

> Wakefield is distributec Vlain issue

is how much transverse momentum is distributed to the beam —or

how large are the Kick factors?

»Beam dynamics simulations will indicate how much (if any?!)

suppression of modes is necessary.

» Experience with SNS indicated that the couplers may not be

necessary (and indeed introduced a major headache due to

multipacting)

»Project X is investigating whether or not HOM damping/couplers

are necessary -influence of (inevitable during fabrication) random

errors reduces the overall average Kick to the beam!

»Overall conclusion :

* Full analysis of coupled multi-cavity modes needed and the largest
ones isolated . If there are trapped modes —do they matter
(inconsequential R/Q)?

" Beam dynamics study incorporating these modes (including realistic
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The Cockcroft Institute

of Accelerator Science and Technology

Thank you for your attention!

59 R.M. Jones, ESS RF Workshop, Lund, Sweden, Sept. 22nd - 2374, 2011


http://en.wikipedia.org/wiki/File:Lund_domkyrkan2007.jpg

4>

The Cockcroft Institute
of Accelerator Science and Teemology

Additional Slides
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