

HOM issues in the ESS SC linac Beam dynamics due to HOMs

Marcel Schuh

LABORATORY FOR APPLICATIONS OF COHERENT SYNCHROTRON RADIATION

Outline

Introduction: Beam - HOM interaction

- Important parameters based on different studies (SPL, SNS, ESS)
 - choice of the cavities's geometrical beta
 - mode frequency spread
 - resonances
- Power dissipation due to HOMs probably more critical than the beam dynamics
- Conclusions

Effects of HOMs

Multipole modes: Deflection

Laboratory for Applications of Synchrotron Radiation marcel.schuh@kit.edu

Higher Order Modes - My Definition

All modes beside the accelerating one

Typically the accelerating mode is the TM_{010,π} - hence, there are modes below this mode in a multi-cell cavity

Divide into monopole, dipole, ... according to the field profile

Focus on monopole modes :

Protons travel with \beta < 1 \rightarrow more sensitive to errors in longitudinal plane

- Deflecting forces less efficient due to higher mass compared to electrons
- Accelerator length small compared to planed et colliders influence of deflecting modes increases with the linac length

Mode characterization

12

- Type: TE, TM,...
- Frequency f_n
- Quality factor Q_{0,n}
- Damping Q_{ex,n}, Q_L
- **R**/Q(β)*n*:
 - Monopoles:

$$(R/Q)_n(\beta) = \frac{\left| \int_{-\infty}^{\infty} E_{n,z}(r=0,z) \exp\left(i\omega_n \frac{z}{\beta c}\right) dz \right|^2}{\omega_n U_n}$$

Dipoles:

$$(R/Q)_{\perp,n}(\beta) = \frac{c^2}{x_0^2 \omega_n^2} \frac{\left| \int_{-\infty}^{\infty} E_{n,z}(r=x_0,z) \exp\left(i\omega_n \frac{z}{\beta c}\right) dz \right|^2}{\omega_n U_n}$$

Mode excitation

Monopole modes

Induced Voltage (fundamental theorem of beam loading)

$$\Delta V_{\mathbf{q},n} = -q \frac{\omega_n}{2} \left(R/Q \right)_n \left(\beta \right)$$

Exponential voltage decay

$$T_{\mathrm{d},n} = \frac{2Q_{\mathrm{L},n}}{\omega_n} \approx \frac{2Q_{\mathrm{ex},n}}{\omega_n}$$

Sum over voltage taking into account phase, charge jitter

Half of the induced voltage act back on the same bunch

Dipole modes

Only bunch of axis excite HOM

$$\Delta V_{\perp,\mathbf{q},n} = \frac{1}{2} i x q \frac{\omega_n^2}{c} (R/Q)_{\perp,n}(\beta)$$

Longitudinal Beam Dynamics

Energy error change in cavity *m*:

$$dE_{m+1} = dE_m + dU_{\mathrm{RF},m} + dU_{n,m}$$

$$dU_{n,m} = q \left(\Re(V_{n,m}) \cos(\omega_{n,m} dt_m) - \Im(V_{n,m}) \sin(\omega_{n,m} dt_m) + \frac{1}{2} \Delta V_{q,n,m} \right)$$
$$dU_{\text{RF},m} = q V_{\text{RF},m}^* \cdot \cos(\phi_{\text{s},m}^* + \omega_{\text{RF}} dt_m) - \Delta U_m \qquad \Delta U_m = q V_{0,m} \cos(\phi_{\text{s},m})$$

Phase error change in cavity *m*:

$$dt_{m+1} = dt_m + (dt/dE)_{E,m} \cdot dE_m$$

 $(dt/dE)_{E,m} = -\frac{L_m}{c \cdot m_0 c^2 \cdot (\gamma_m^2 - 1)^{3/2}}$

Transverse Beam Dynamics

Transfer Matrix between cavities:

$$\begin{pmatrix} x_{m+1} \\ x'_{m+1} \end{pmatrix} = \begin{pmatrix} \cos(L/\beta) & \beta\sin(L/\beta) \\ -\frac{1}{\beta}\sin(L/\beta) & \cos(L/\beta) \end{pmatrix} \cdot \begin{pmatrix} x_m \\ x'_m \end{pmatrix}$$

Bunch induce a imaginary voltage:

$$\Delta V_{\perp} = ixq \frac{\omega^2}{c} (R/Q)_{\perp}$$

HOM kicks bunch/particle - momentum change:

$$\Delta x' = \frac{e\Re(V_{\perp})}{c \cdot p_{\parallel}}$$

Simulation of higher order mode Dynamics (SMD)

- One HOM per cavity (monopole or dipole)
- Gaussian HOM frequency distribution
- R/Q(β_{beam})
- Set global Q_{ex} (Damping)

Simulation of higher order mode Dynamics (SMD)

- One HOM per cavity (monopole or dipole)
- Gaussian HOM frequency distribution
- R/Q(β_{beam})
- Set global Q_{ex} (Damping)
 - ➡ Load HOM via bunch tracking simulation (Bunch ⇔ HOM interaction)

Simulation of higher order mode Dynamics (SMD)

- One HOM per cavity (monopole or dipole)
- Gaussian HOM frequency distribution
- R/Q(β_{beam})
- Set global Q_{ex} (Damping)
 - ➡ Load HOM via bunch tracking simulation (Bunch ⇔ HOM interaction)

GOAL: Define upper limits for Qex

2011-09-22 Marcel Schuh

Simulation Input Data

Linac layout (cavity spacing, V_{acc}(cavity), φ_s)

- Beam noise at injection
- HOM data
 - HOM frequencies
 - (R/Q)(β) map

Beam Dynamics Simulations Studied effects

- High R/Q, I_b, as function of Q_{ex}
- HOM frequency spread
- Beam noise
 - Bunch to bunch charge scatter
 - Injection
- Resonances
- RF errors
- TM₀₁₀ modes
- Alignment (transverse)
 - Injection position
 - Cavity alignment

Details see: Phys. Rev. ST Accel. Beams, 2011, 14, 051001

The SPL Ro www.cern	&D Proj .ch/project-sp	ject	Karls	ruhe Institute of Technology
160 MeV - S	upercond β = 0.65	butting Proton Linac $\beta = 1.0$		/5 GeV
General parameters		Cavity parameters	$\beta_g = 0.65$	$\beta_g = 1.0$
Beam power [MW]	4	Operation Frequency [MHz]	704.4	704.4
Beam current [mA]	20 - 40	Cells per cavity	5	5
Pulse length [ms]	≤ 1.0	Design gradient @ β _g [MV/m]	19	25

 $R/Q(β_g)$ [linac Ω]

Cavities installed (5 GeV)

Rep. frequency [Hz]

Physical length [m]

50

~500

560

~192

320

~54

R/Q(β)_{max} Monopoles

Marcel Schuh

Laboratory for Applications of Synchrotron Radiation marcel.schuh@kit.edu

Longitudinal: SPL example

Marcel Schuh

Laboratory for Applications of Synchrotron Radiation marcel.schuh@kit.edu

Transversal: SPL example

Laboratory for Applications of Synchrotron Radiation marcel.schuh@kit.edu

Higher HOM frequency spread decreases growth

Laboratory for Applications of Synchrotron Radiation marcel.schuh@kit.edu

Bunch Charge Scatter (SPL)

Bunch charge scatter drives HOM in longitudinal plane

Machine Lines (SPL)

Longitudinal

Use RF-Errors as reference to judge impact of HOM

2011-09-22 Marcel Schuh

Laboratory for Applications of Synchrotron Radiation marcel.schuh@kit.edu

New machine lines, created by the pulse substructure

Can resonantly excite HOMs

New machine lines, created by the pulse substructure

Can resonantly excite HOMs

New machine lines, created by the pulse substructure

Can resonantly excite HOMs

200

I_b [mA]:

400

10²

Passband modes can drive instabilities at high currents or if they get resonantly excited

2011-09-22 Marcel Schuh Slide 20

 $TM_{010}, 4/5\pi$

 σ_f = 10.0 kHz

N = 100

Passband modes

TM₀₁₀, $3/5\pi$ (chopping)

I_b [mA]:

•

400

200

10²

 $\sigma_{\rm f}$ = 10.0 kHz

N = 100

Transverse alignment

Cavity alignment

Injection position

Not a concern in the used simulation model

Impact of different effects SPL case study

Effect	Longitudinal	Transversal
HOM Frequency Spread	↘ (>100kHz)	↘ (>1MHz)
Machine Lines	*	\rightarrow
I·R/Q	*	
Charge Scatter	*	\rightarrow
Chopping	*	 (bunch charge)
Passband Modes	(Chopping)	-
RF-Errors	\rightarrow	-
Alignment Errors	-	\rightarrow

Maximum Q_{ex} between 10⁴ and 10⁷ dependent on the operation mode (chopping)

Differences SPL, SNS & ESS

Parameter	SNS	SPL	ESS
Beam power [MW]	1,44	~4	5
Output Ekin [GeV]	1	4-5	2.5
Beam current [mA]	26	20 - 40	50
Pulse length [ms]	1	0.4 - 0.8	2.86
Pulse substructure	yes	yes (high freq.)	no
Cavity freq. [MHz]	805	704,4	704,4
Pulse rep. [Hz]	60	50	14
β _g	0.61/0.81	0.65/1.0	0.7/0.9
Cells	6/6	5/5	5/5
E₀T(βg)	10.1/15.8	19.3/25	~15(?)/~18.1
Lenght Ell. Cav Sec. [m]	~160	~525	~300

To be studied in ESS linac

- Passband modes, especially TM_{010,4/5π} mode to be considered in choice of geometrical beta
- Resonances only fundamental machines (integer multiples of the bunch frequency) lines are a concern
- Effect of long pulses (higher HOM voltage can build up)
 - Power dissipation
- Beam noise is to weak to drive instabilities assuming same values as SPL
- Problems at the moment
 - No cavity design of the proposed geometrical beta is available
 - HOM frequencies and R/Q values have to be estimated
 - No dedicated beam dynamics simulations carried out so fare

Analytic studies based on the experience with SPL study...

Passband modes

High R/Q values at injection could cause instabilites Lower β_g is preferable in medium beta section

2011-09-22 Marcel Schuh

Laboratory for Applications of Synchrotron Radiation marcel.schuh@kit.edu

Longitudinal: Mode with high R/Q, not resonant

- ESS linac with old layout and cavities used in frequency review meeting
- R/Qmax of test cavity a factor two higher

Power dissipation

Average Power dissipation:

$$\langle P_{\text{ex},n} \rangle = \frac{1}{T_{\text{p}}(R/Q)_{n}Q_{\text{ex},n}} \int_{t_{1}}^{t_{1}+T_{\text{p}}} |V_{n}(t)|^{2} dt$$

Analytic formulae for HOM voltage (no noise considered)

$$V_{\mathrm{p},n} = \Delta V_{\mathrm{q},n} \prod_{j=0}^{M} \frac{1 - \exp\left(-k_j T_j / T_{\mathrm{d}} + ik_j \omega_n T_j\right)}{1 - \exp\left(-T_j / T_{\mathrm{d}} + i\omega_n T_j\right)}$$

- Most power is dissipated in load
- Dissipated power scales
 - linear with R/Q
 - linear with frequency
 - quadratic with I_b

Resonant HOM voltage growth

RF voltage error about 100kV → (R/Q) · Q_{ex} ~ 10⁶ in case of resonant excitation

Power dissipation spectrum

Power dissipation is only high at a resonance

2011-09-22 Marcel Schuh

Laboratory for Applications of Synchrotron Radiation marcel.schuh@kit.edu

Power dissipation close to a resonance

Sharp resonance

2011-09-22 Marcel Schuh

No mode below cut-off close to machine line

R/Q values are moderate - no noise induced instabilities are expected

Conclusion

Based on the analytic analysis only Resonances are a real concern

- Damping has to be very strong Q_{ex} ~ 10⁴ to enable operation with a HOM directly at HOM
- Resonances are very sharp at weak damping probability to hit a resonance is very small. If so the mode can be shifted by cavity detuning
- Dedicated HOM couplers are not needed from the beam dynamics point of view
- Check, if a lower geometrical beta in the medium beta section could be used

Proposed studies:

- Analyze final cavity geometry exclude mode close to resonances
- Beam loss studies in the context of HOMs all simulations showed assume a point charge

2011-09-22 Marcel Schuh

Laboratory for Applications of Synchrotron Radiation marcel.schuh@kit.edu

HOM Power Simulation with Beam Noise (SPL)

β_g dependency of R/Q

To keep B_{peak}/E_{acc} small, R_{iris} has to be reduced with β_g and so also R/Q(β_g) decreases.

Marcel Schuh

R/Q -maps SNS linac

 $\beta_{g} = 0.61$

805	f _{acc} [MHz]	805
6	cells	6
33 (3)	cavities (per module)	48 (4)

Slide 36

 $\beta_{g} = 0.81$

R/Q -maps SPL

 $\beta_{g} = 1.0$

 $\beta_{g} = 0.65$

704,4	f _{acc} [MHz]	704,4
5	cells	5
54 (6)	cavities (per module)	196 (8)

2011-09-22

* old CDR2 layout 22 Marcel Schuh Laboratory for Applications of Synchrotron Radiation marcel.schuh@kit.edu

SPL baseline

Define operation β limit, where R/Q(β) of other TM₀₁₀ mode exceeds R/Q(β) of operation mode.

Marcel Schuh

Laboratory for Applications of Synchrotron Radiation marcel.schuh@kit.edu

SPL Baseline + β_g = 0.92

Laboratory for Applications of Synchrotron Radiation marcel.schuh@kit.edu

Induced HOM voltage

Laboratory for Applications of Synchrotron Radiation marcel.schuh@kit.edu

Induced HOM voltage

Induced HOM voltage

2011-09-22 Marcel Schuh Laboratory for Applications of Synchrotron Radiation marcel.schuh@kit.edu

Slide 41

RC Cavities: R/Q(β)

LINAC Layout

Gradient and Phase Along Linac

Gradient and Phase Along Linac

Gradient and Phase Along Linac

IZ GROUP

Simulation ParamEter General Beam Dynamic

	704.4 MHz	1.3 GHz	
Current	50 mA	50 mA	
NC Frequency	352.2 MHz	325 MHz	
Input Energy	50 MeV	50 MeV	
No. Particles	50,000	50,000	
Distribution	Gaussian 3xσ	Gaussian 3xσ	
e.x. norm. rms	0.2455 pi.mm.mrad		
e.y. norm. rms	0.2419 pi.mm.mrad		
e.z. norm. rms	0.6464 pi.mm.mrad		

Elliptical Cavities

	704.4 MHz		1.3 GHz	
β _g	0.63	0.75	0.74	0.84
Cells	5	5	9	9
L (L _{active}) [m]	0.99 (0.67)	1.11 (0.79)	1.09 (0.77)	1.19 (0.87)
R _{iris} [cm]	5.5	6.2	3.5	3.5
R/Q(β _g) [Ω [†]]	238	307	513	715
Gradient [MV/m]	14	20	15	21
f _{Cutoff} [GHz]	2.09	1.85	3.28	3.28
Installed	36	168	40	160

[†]linac definition

2011-09-22 Marcel Schuh

Monopole Spectrum

Monopole Spectrum

2011-09-22 Marcel Schuh

Laboratory for Applications of Synchrotron Radiation marcel.schuh@kit.edu

Beam Parameter HOM Simulations

Parameter	Mean (704.4 MHz/1.3 GHz)	σ
Bunch frequency [MHz]	352.2 / 325	-
Pulse length [ms]	~2 (700,000 bunches)	-
Period length [ms]	50	-
Beam current [mA]	50400	1 %
WInput [MeV]	225 (380) /380	2·10 -⁵
Phase [deg]	-30 (-16) / -60	0.3 (0.2)/ 0.4

HOM Voltage along the linac after one Pulse

100 linacs simulated:

- mode with highest
 R/Q (β) present in
 each cavity
- different HOM frequency patterns along linac
- no HOM voltage present at start
- one pulse simulated
- same injection noise
- same damping in all cavities: Q_{ex}=10⁸

2011-09-22

Marcel Schuh

Laboratory for Applications of Synchrotron Radiation marcel.schuh@kit.edu

Machine Line

-IZ GROUF

704.4 MHz

marcel.schuh@kit.edu

1.3 GHz

	1.761 GHz, 1Ω	f _{res} , R/Q	2.925 GHz, 1Ω
	50mA	lb	50mA
	0	Δf	0
	10 ⁸	Q _{ex}	10 ⁸
2011-0	9-22 Marcel Schuh Laboratory for	Applications of Synchrotron Radiation	Slide 50

SNS - Parameters

Parameter	Unit		Value
Beam power Repetition rate Average pulse current Peak pulse current Beam pulse length Sub-pulse length Sub-pulse repetition rate Bunch frequency	$\begin{bmatrix} MW \\ [Hz] \\ [mA] \\ [mA] \\ [ms] \\ [\mu s] \\ [MHz] \\ [MHz] \end{bmatrix}$		$ \begin{array}{r} 1.0\\ 60.0\\ 26\\ 38\\ 1\\ 645\\ 1.059\\ 402.5 \end{array} $
Sections		$\beta_{\rm g}=0.61$	$\beta_{\rm g}=0.81$
Output energy Number of cavities Cavities per cryostat Period length	[MeV]	379 33 3 5 839	1,000 48 4 7,891
Operation phase Q_{ex} Power Coupler Q_{ex} HOM Coupler	[deg]	-20.5 $7.3 \cdot 10^5$ 10^4	-19.5 $7.0 \cdot 10^{5}$ 10^{4}
Length Cavities	[m]	64 $\beta_{\rm g} = 0.61$	95 $\beta_{\sigma} = 0.81$
Cells Frequency Geometrical beta β_g $(R/Q)(\beta_g)$ $E_0T(\beta_g)$	[m MHz] $[\Omega]$ [m MV/m]	6 805 0.61 279 10.1	6 805 0.81 483 15.8
Beam	Unit	Value	Variation
Injection energy Injection phase Beam current RF Errors	[MeV] [deg @ 805 MHz] [mA]	185.6 -20.5 0.26-0.4	$ \begin{array}{r} \hline 0.07 \\ 0.225 \\ 0.3\% \end{array} $
Amplitude Phase	$[\mathrm{deg}~@~805\mathrm{MHz}]$		$0.5\% \\ 0.5$

Marcel Schuh

SNS Simulations

marcel.schuh@kit.edu

Karlsruhe Institute of Technology

Karlsruhe Institute of Technology

ANKA @ Karlsruhe

Marcel Schuh

Laboratory for Applications of Synchrotron Radiation marcel.schuh@kit.edu

