

Status of LIU proton beams

F. Asvesta, <u>Hannes Bartosik</u>, E. de la Fuente, I. Karpov, S. Kostoglou, K. Li, I. Mases, L. Mether, G. Papotti, K. Paraschou, G. Rumolo, B. Salvant, M. Schenk, F.M. Velotti, C. Zannini

Outline

- Operational BCMS beam in 2024
 - Optimizations applied
 - Performance evolution along the year
 - Beam degradation on SPS and LHC injection plateaus
- Status of LIU performance ramp-up
 - Intensity ramp-up
 - LIU BCMS beam
 - Other beams: standard, 8b4e, hybrid
- Summary and outlook

Outline

- Operational BCMS beam in 2024
 - Optimizations applied
 - Performance evolution along the year
 - Beam degradation on SPS and LHC injection plateaus
- Status of LIU performance ramp-up
 - Intensity ramp-up
 - LIU BCMS beam
 - Other beams: standard, 8b4e, hybrid
- Summary and outlook

Optimization of BCMS beam in the PSB

- Effort mostly concentrated on tail reduction
 - V1: BCMS on LIU target: brightness margin was used for tails reduction ($\epsilon \sim 1 \mu m/q \sim 1.3$ in vertical)
 - V2: Introduced scraping at low energy could give Gaussian profiles, propagated to operation (ϵ ~1µm /q~1 in vertical)

Optimization of BCMS beam in the PS

- · Effort mostly concentrated on tail reduction
 - V1: close to LIU target & WP adjustments at transition for tail reduction (ϵ ~1.1 μ m /q~1.35)
 - V2: Further optimization of WP around transition (ϵ ~1.1 μ m /q~1.15)
 - V3: Further optimization of WP around transition & Chroma correction ($\epsilon \sim 1.1 \mu m / q \sim 1$)
 - V4?: Improvement couldn't be traced down to any particular setting or observable ...

Optimization of BCMS beam in SPS

- LHC Injectors Upgrade
- Working point optimization to reduce emittance blow-up (23.05.2024)
 - Keeping the incoherent tunes constant along injection plateau (instead of coherent tunes as done in the past) to minimize blow-up from space charge

Optimization of BCMS beam in SPS

- Working point optimization to reduce emittance blow-up (23.05.2024)
 - Keeping the incoherent tunes constant along injection plateau (instead of coherent tunes as done in the past) to minimize blow-up from space charge
 - Within 15% of LIU brightness target
 - Further optimization of beam from pre-injectors along the year followed (mostly focused on tails)

Evolution of emittances / tails at LHC injection

B1H, WS 2x36b

- Emittance growth (and tail generation) on SPS injection plateau
 - Around 10% emittance growth from PS-to-SPS, and around 10% in SPS

- Emittance growth (and tail generation) on SPS injection plateau
 - Around 10% emittance growth from PS-to-SPS, and around 10% in SPS

- Emittance growth (and tail generation) on SPS injection plateau
- Emittance growth on LHC injection plateau

- Emittance growth (and tail generation) on SPS injection plateau
- Emittance growth on LHC injection plateau
 - About 0.4 μ m / hour (only partially explained by IBS) + e-cloud effects (B1H worse)

Fill 9983 Injection, VRF=5.4 MV

- Emittance growth (and tail generation) on SPS injection plateau
- Emittance growth on LHC injection plateau
- Tail generation for B1H at SPS-to-LHC transfer
 - Known error in quadrupole transfer function will be corrected for 2025

Outline

- Operational BCMS beam in 2024
 - Optimizations applied
 - Performance evolution along the year
 - Beam degradation on SPS and LHC injection plateaus
- Status of LIU performance ramp-up
 - Intensity ramp-up
 - LIU BCMS beam
 - Other beams: standard, 8b4e, hybrid
- Summary and outlook

LIU beam commissioning in Run 3: ramp-up plan

LHC Injectors Upgrade

Defined at the LIU Montreux workshop in 2020

A. Huschauer et al., LIU workshop 2020

- Year-by-year intensity goals
- LIU intensity demonstrated in 2024 with 4x72 bunches at 450 GeV

LIU intensity at 450 GeV demonstrated in 2024

- LHC Injectors Upgrade
- Scrubbing run: reached with 4x72 bunches with nominal bunch length
 - Transverse emittances not yet optimized for standard beam at LIU intensity
 - Further studies limited by RF (vacuum spikes, <u>RF modules breaking</u>) → work is ongoing during the YETS24/25 to make the RF system ready for LIU intensity (improved modules)

14 January 2025

Emittances of BCMS beam at ~LIU intensity

(2024.10.03)4x48 bunches, 2.6e11 p/b injected intensity

Measurements at **PS** extraction.

Measurements at **SPS**:

- Injection (35 ms after inj.) •
- After scraping •

CERN

q-value ~1.06 at injection q-value ~1.17 before scraping q-value ~1.11 after scraping

Time in the Cycle (ms)

HiLumi WP2 meeting, "Status of LIU beams"

Emittances of BCMS beam at ~LIU intensity

(2024.10.03)4x48 bunches,2.6e11 p/b injected intensity

Measurements at **PS extraction**.

Measurements at **SPS**:

- Injection (35 ms after inj.)
- After scraping

q-value ~1.06 at injection q-value ~1.17 before scraping q-value ~1.11 after scraping

Other beams

- Standard beam at ~LIU intensity (4x48 due to limited RF power in 2024)
 - Emittances of about 2.4 μ m after scraping (LIU target is 2.1 μ m)
 - Tails are larger than for BCMS beam

14 January 2025

Other beams

- Standard beam at ~LIU intensity (4x48 due to limited RF power in 2024)
 - Emittances of about 2.4 μm after scraping (LIU target is 2.1 $\mu\text{m})$
 - Tails are larger than for BCMS beam

• 8b4e

- Maximum intensity reached so far: 2.15e11 p/b at extraction of 4x56 bunches with nominal bunch length (1.65 ns)
- Was not a priority in 2024

Hybrid beam

• Not worked on in 2024

Outline

- Operational BCMS beam in 2024
 - Optimizations applied
 - Performance evolution along the year
 - Beam degradation on SPS and LHC injection plateaus
- Status of LIU performance ramp-up
 - Intensity ramp-up
 - LIU BCMS beam
 - Other beams: standard, 8b4e, hybrid
- Summary and outlook

Summary & Outlook

- BCMS beam with improved beam quality (reduced tails) in 2024 operation → clear impact on LHC performance (operating close to burn-off limit)
- LIU intensity demonstrated with 4x72 bunches and nominal bunch length
 - Emittance and brightness (after scraping) achieved so far with 4x48 bunches

4x48 bunches	Intensity	Emittance	Brightness	Target brightness
standard	2.3e11 p/b	2.40 μm	0.95e11 p/b / μm	1.1 p/b / μm
BCMS	2.3e11 p/b	1.75 μm	1.3e11 p/b / μm	1.4 p/b / μm

- Outlook for 2025
 - Continue optimization of BCMS beam (emittance, tails)
 - Optimization of other beams depending on priority from HL-LHC (8b4e, standard, hybrid?)

THANK YOU FOR YOUR ATTENTION