
GoCxx: A tool to easily leverage C++ legacy code for
multicore-friendly Go libraries and frameworks

S. Binet

Context: why Go ?

Current HENP libraries and frameworks were written
before multicore systems became widely deployed
and used. A ”single-thread” processing model
emerged and is now greatly impairing our abilities to
scale in a multicore/manycore world.
Could HENP migrate to a language with none of the
deficiencies of C++ (build time, deployment, low level
tools for concurrency) and with the fast turn-around
time, simplicity and ease of coding of Python ?

Could this be Go ?

Go: http://golang.org

I concurrent, compiled, garbage collected
I open-source general programming language
I now stable: version 1 since March 2012

I feel of a dynamic language
I safety of a static type system
I compiled down to machine language (so it is fast)

GoCxx: bitbucket.org/binet/go-cxxdict

I The Go standard library already ships with a FFI,
called cgo
IC support
I no support for C++

ISWIG-2 has support for Go
I supports gccgo and gc compilers
I can not parse TObject.h

IGoCxx
I address all shortcomings of cgo and SWIG
I reuse all the know-how of Reflex+GCC-XML
I generate bindings for all C++ constructs
I provide access to C/C++ legacy libraries

Architecture & Strategy

UNIX-y model: separate binaries doing one thing.
Igo-gencxxinfos: generates Go serialized objects

describing C/C++ libraries
Igo-gencxxwrapper: generates bindings for the
C/C++ libraries

Ipkg/cxxtypes: models C++ types and identifiers
Ipkg/wrapper: infrastructure and logic to load the
C/C++ types and identifiers informations. Schedules
the plugins to generate the bindings.

GoCxx components & Workflow

go-gencxxinfos

I loads a GCC-XML-produced XML file
I creates types (classes, structs, enums, . . . )
I creates identifiers (enum values, variables,

functions, namespaces)
I serializes representation into a repository file
shell> gccxml lib.h -fxml=lib.xml
shell> go-gencxxinfos \

-fname lib.xml -o repo.db

go-gencxxwrapper

I loads repository files
I loads wrapper plugins (cxxgo, reflex,. . . )
I selects types and identifiers to be wrapped
I runs each loaded plugin to create the wrappers
shell> go-gencxxwrapper \

-fname repo.db -sel sel.xml \
-pkg foo -o outdir

shell> ls outdir
foo.h foo-impl.cxx foo.go

End user code

import pkg "some/path/to/foo"
func main() {

p1 := pkg.P4EEtaPhiM()
p2 := pkg.P4PxPyPzE(/*...*/)
println("dR=",pkg.DeltaR(p1, p2))

}

Future work

I Finish CLang and GCC-plugin input plugins
I Investigate other output plugins (cling, reflex,
cython, Java, C#, . . . )

binet@cern.ch GoCxx (LAL/IN2P3, Fr)


