
Preparing for C++11 in Experiments’ Code
Axel Naumann <axel@cern.ch> (CERN PH-SFT) ROOT

Introduction
C++11 is a revolution to C++, adding many features (e.g. std::unordered_map) and new syntactic constructs (e.g. move semantics, lambdas). Headers
have to be understood also by C++ novices. Limiting the exposed features is already common for C++ 2003, and will likely be necessary for C++11, even
for the bravest experiments.
How could one enforce such rules? Given that part of it is syntactic, simple text / parser-based analysis is difficult. Instead we suggest to employ a
compiler with reasonable C++11 support (clang) that can translate C++ code into XML entities representing the C++ code elements it has identified. This
in turn allows for trivial identification of disallowed elements, and is simple to embed in existing build systems.

C++11? Yea!
Some C++11 features are too valuable to ignore:

threading concepts are (finally!) part of the language, e.g. variables
with thread local storage, also for data members

rvalue reference (“move semantics”) prevents coping of data

hashed containers (finally!), called unordered_map/set/multimap

regular expressions (finally!)

initializer lists allow for uniform initialization of everything

automatic type deduction from initializer

C++11? Nay!
Others add complexity beyond value, especially when used in interfaces:

lambda e.g. as default argument:
complex syntax that renders function signatures unreadable

user defined literals:
meant to shorten constants but obscuring their type; no
documentation system capable of documenting literals operators
rendering them completely opaque

tuples, the template-crazy version of structs:
classes with named members are much more readable

1. Highlights of C++11 features:
http://www2.research.att.com/~bs/C++0xFAQ.html#language

2. Google’s discussion of C++11 in the context of coding rules:
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml#C++11

3. clang Plugin tutorial
http://code.google.com/p/chromium/wiki/WritingClangPlugins

4. Status of C++11 support in GCC / libstdc++
http://gcc.gnu.org/onlinedocs/libstdc++/manual/status.html

Resources and further reading
More info:

Source parsing
Source files must be parsed within
the build system to expose parser to
compilation flags (header search
path, CPP macros etc). Compilers
are a drop-in solution, either as
explicit feature analysis step, or (e.g.
using plugin-architecture) as an
additional output.

Clang as parser
Invoking clang with -ast-dump-xml
creates an XML representation of all
input (abstract syntax tree of C++
source). This can be as an output file
or on stdout / stderr for piping.

An alternative, more performant
approach would be a (trivial) plugin
(as supported by GCC and clang)
specialized in reporting blocked
features in the code, by visiting all
AST nodes.

Filtering output
Output can be searched for entities
that are not to be used, e.g.
<lambda for lambda expressions.

No filtering would be necessary if
using a compiler plugin.

Reporting
An obvious way of reporting is by
triggering a build failure if any of the
suppressed features are use.

int foo() {
 thread_local int i; // one value per thread
}

Huge(Huge&& obj) {
 fData = obj.fData; // hand data over
 obj.fData = 0; // invalidate source
}

int foo(int i,
 std::function<int(int)> f
 = [](int x) -> int {
 return x / 2; }
);

LengthInFeet length = 12.3_ft;
// “_ft” is defined by custom literal operator:
LengthInFeet operator”” _ft(double);

Need for Automatic Feature Detection
Many new features improve clarity (auto), shorten source (initializers), supersede custom implementations (regex, hashed collections), or provide platform-
independent solutions (thread_local). Banning these features, or fundamentally excluding C++11 is wrong. Instead, a reasonable compromise between
features and readability has to be chosen. This is as simple as deciding which elements to allow (in interfaces and implementations) and which not, based
on the C++ 2011 standard (available e.g. in the CERN and Fermilab library).
With e.g. LHC’s 50 MLOC C++ code, visual inspection is not an option. Obvious solution: ask a compiler!

std::unordered_map<std::string, int> container;
int value = container[“quick!”];

using namespace std;
regex rx(“ “); // separator
cmatch match;
if (regex_search(“so many words”, match, rx)) {
 cout<<“Found “<<res.size()<<“ words”<<endl;
}

std::tuple<int, MyClass, double>
 t(12, MyClass(), 3.141);
double almostPi = std:get<2>(t);

std::vector<int> v = {0, 4, 9, 16, 25};
std::list<std::map<int,float>> = {{0,0.},{1,1.}};

auto it = myComplexMapType.begin();

clang “grep”

<lambda

Summary
Only parts of C++11 are implemented in any compiler. That is not a reason to wait: already now, the available features give access to a wide range of
improvements. Already now, almost all of the LHC software’s building blocks (e.g. ROOT) can be built with C++11 enabled. Before switching to C++11, a
decision should be taken about which features can be used and exposed in the interfaces. Tracking of used features is simplified by using the compilers
themselves, either by a custom plugin or by parsing an XML representation of the source code.

QR code generated on http://qrcode.littleidiot.be

http://www2.research.att.com/~bs/C++0xFAQ.html#language
http://www2.research.att.com/~bs/C++0xFAQ.html#language
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml#C++11
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml#C++11
http://code.google.com/p/chromium/wiki/WritingClangPlugins
http://code.google.com/p/chromium/wiki/WritingClangPlugins
http://gcc.gnu.org/onlinedocs/libstdc++/manual/status.html
http://gcc.gnu.org/onlinedocs/libstdc++/manual/status.html

