## Review of HEP Analysis Strategies

Markus Klute Massachusetts Institute of Technology May 22nd, 2012



## **HEP Data Analysis**

#### Analysis

- statistical interpretation of an ensemble of events collected in a HEP experiment
- · typically, we have a model for signal and background
- extract properties from statistical analysis

### Examples

- OPAL, AMS, LHCb and CMS
- search for the Higgs boson in CMS







### **HEP Event**

#### **Event**

- readout cycle of the experiment
  - · bunch crossing in accelerator structure
  - interaction of particle with detector
- event consists of sub-detector measurements
- particles are identified in a reconstruction step













**LHCb at LHC** 





**AMS at ISS** 

Markus Klute - MIT

## **Example: OPAL at LEP**



- OPAL (and the other LEP exp.) used analysis frameworks based on PAW
- Analysis software mainly in FORTRAN
- GEANT detector simulation
- HEP community transitioned to ROOT/ C++ and other object-oriented programming at the end of the experiment lifetime

- OPAL in 1991
  - trigger rate 4Hz
  - event size 12-40 kB
- OPAL total data volume
  - reconstructable dataset ~2 TB
  - analysis dataset ~300 GB
- Storing and reconstructing OPAL data in 1991 was a challenge
- Parallel event processing on "computing farm"
- Trivial with today's technology
- Event reconstruction took 30-60s at the time (on a 17SPECMark CPU)

## **Example: AMS at the ISS**

- Alpha Magnetic Spectrometer Experiment on the International Space Station
- Computing challenge is the bandwidth limitation of 10Mb/s
- Detector output of ~7Gb/s is reduced using dedicated algorithms (zero suppression)
- Detector can buffer ~one week of data
- Primary data archive with 2 month buffer using laptop on ISS
- Data is transmitted using satellites to White Sands Ground terminal and via Huntsville to the AMS center at CERN
- AMS produces ~36TB of raw data per year
- Analysis framework is based on ROOT



**AMS at ISS** 



Astronaut Don Pettit installs hard drive on AMS laptop





6



## **Example: LHCb at the LHC**

- LHC used luminosity leveling to control pile-up conditions
- Nominal interaction rate in ~20 MHz
- Reduced to 1MHz by L0 hardware trigger
- High level trigger farm (26k procs) reduced the rate to ~3.5kHz
- RAW event size ~50kB, resulting in ~1PB/y
- USER defined pre-selections reduce event sample to 10%
- Pre-selections are updated 2-3 times per year
- 150kB per reconstructed event. A micro format
   of 10kB per events used for large selections



**LHCb at LHC** 

- Software framework Gaudi also used by other experiments
- GEANT4 detector simulation
- Analysis framework based on ROOT

## **Example: CMS at the LHC**

- Reduce events rates using a hardware trigger (100kHz) and high level trigger farm (300Hz)
- Event samples are split in streams of ~50 Hz or less based of trigger signatures (e.g. DoubleMu)
- Event size for data
  - RAW (460kB), RECO (680kB), AOD (230kB)
- Total volume of data and MC stored on tape ~30PB
- 2011 AOD samples ~700TB. Multiple copies needed to support analysis
- USER access data (AOD) via grid submission
- GEANT4 detector simulation
- Analysis framework based on ROOT





- Prerequisite for an effective analysis is the availability of datasets of manageable size
- Data reduction by data format
  - RAW → RECO format → Analysis format → USER defined → more USER defined
- Data reduction by event selection
  - reduce volume for analysis use
  - selections are applied at all data format levels
- Both methods have pros and cons
  - typically trade CPU and flexibility with storage
- Working point for an experiment (collaboration) needs optimization
  - Guideline (stating the obvious)
    - samples needed many times have to be small and always available
    - trade between event count and size / information
    - samples needed rarely can be large (RECO samples)
    - calculate derived quantities to minimize storage requirements, e.g. jets, electrons, missing ET

- Data reduction by event selection
- Classify events in stream/skims which use a well defined event selection



- Subset of events contains all events need to perform an analysis
- Volume of events sample of "type D" can be much reduced wrt the total volume



Markus Klute - MIT

- Experiments adopted computing / analysis strategy according to given challenges
- Main concepts a very similar across experiments with strong links between computing and analysis models
- Large scale experiments profit from improvements in computing technologies (grid)
- Standardized and collaborative tools
  - modeling of detectors with GEANT
  - physics using Monte Carlo generators with standardized interfaces
  - ROOT is main analysis tool and includes classes for statistical analysis

- Study the origin of electroweak symmetry breaking
  - how do W and Z bosons acquire mass?
  - can we explain fermion masses?
  - Higgs mechanism give answers
  - new particle is proposed in the SM: the Higgs Boson
    - mass is free parameter
    - all other properties are predicted in the SM
- Search for the Higgs Boson at the LHC







Markus Klute - MIT



- Analysis strategy
  - WW pre-selection
    - · establish WW signature
    - data driven estimates of main backgrounds
  - Higgs selection
    - discriminate Higgs against WW background
    - cut-based selection or multivariate analysis discriminator





14

- Data streams and reduction in analysis flow
  - /DoubleMu 63M events
  - /DoubleElectron 21M events
  - /MuEG 25M events
  - ~3.5M after pre-selection
  - ~100 events after WW selection
- Monto Carlo needs
  - 20M signal events
    - produced for 25 mass points from 110 GeV < mH < 600 GeV</li>
    - POWHEG and PYTHIA
  - 110M background events
    - MADGRAPH, PYTHIA and POWHEG
  - MC generators are interfaced in software framework or used via standard LHE format
- Pile-up (in-time and out-of-time)
  - large effects on measurements of missing transfers energy, isolation of leptons, jet measurements, etc.
  - distribution unknown a priori
  - re-weighting of MC is required to match collision data
    - MC samples have been (digitized and) reconstructed using two different PU scenarios
- Beam spot
- Center-of-mass energy



LHC beam parameter modified in Sep. 2011



PU re-weighting



## Statistical Interpretation

#### General framework

- signal strength modifier  $\sigma = \mu \cdot \sigma_{\text{SM}}$
- nuisance parameter  $\theta_i$
- likelihood  $\mathcal{L}(\text{data} \mid \mu \cdot s(\theta) + b(\theta)) = \mathcal{P}(\text{data} \mid \mu \cdot s(\theta) + b(\theta)) \cdot p(\tilde{\theta} \mid \theta)$
- construct test statistic
- Quantify an excess

$$q_0 = -2 \ln \frac{\mathcal{L}(\operatorname{data} | b(\hat{\theta}_0))}{\mathcal{L}(\operatorname{data} | \hat{\mu} \cdot s(\hat{\theta}) + b(\hat{\theta}))}, \qquad \hat{\mu} \ge 0,$$

Quantify the absence of a signal

$$q_{\mu} = -2 \ln \frac{\mathcal{L}(\operatorname{data} | \mu \cdot s(\hat{\theta}_{\mu}) + b(\hat{\theta}_{\mu}))}{\mathcal{L}(\operatorname{data} | \hat{\mu} \cdot s(\hat{\theta}) + b(\hat{\theta}))}, \qquad 0 \leq \hat{\mu} < \mu,$$

modified frequentist CLs (similar to method used at LEP)

$$\begin{array}{ll} \mathrm{CL_{s+b}} & = & P\left(\left.q_{\mu} \geq q_{\mu}^{obs} \mid \mu \cdot s + b\right.\right), \\ \mathrm{CL_{b}} & = & P\left(\left.q_{\mu} \geq q_{\mu}^{obs} \mid b\right.\right), \end{array} \qquad \mathrm{CL_{s}} = \frac{\mathrm{CL_{s+b}}}{\mathrm{CL_{b}}}$$



## Statistical Interpretation

- If CLs  $\leq \alpha$  for  $\mu$  = 1, conclude that signal is excluded at (1- $\alpha$ ) CL
  - conservative approach given that proper CLs can not be determined w/o knowing the signal beforehand
- CLs+b and CLb are determined from independent toys
  - O(1000) needed to have a statistical precision of O(1%)
  - toys are numerical integrations of the likelihood functions
- Limit calculation procedure
  - data considered binned or unbinned
  - models can be number (cut & count), shapes or parametrized models that make predictions on presence of data
  - determine q<sub>μ</sub> for an ensemble of μ values from a maximum likelihood fit of the model of data and calculate CL<sub>s+b</sub> and CL<sub>b</sub>
  - systematic uncertainties incorporated as nuisance parameters to the fitted likelihood functions L and integrated out
  - 95% CL upper limit
    - determine the value of  $\mu$  where CLs  $\leq 5\%$



## **Example: CMS Higgs Combination**

- Limit calculation in CMS Higgs search
  - tools based on ROOTs statistic classes, alternatives available and used to cross check results
  - 43 channels (and growing)
  - 156-222 nuisance parameters (depending on tested mass hypothesis)
  - 183 mass hypotheses (from 110 GeV ≤ mH ≤ 600 GeV)



| Channel                                    | $m_H$ range       | Luminosity  | Sub-     | $m_{\rm H}$ | Reference |
|--------------------------------------------|-------------------|-------------|----------|-------------|-----------|
|                                            | (GeV)             | $(fb^{-1})$ | channels | resolution  |           |
| ${ m H}  ightarrow \gamma \gamma$          | 110-150           | 4.8         | 5        | 1-3%        | [60]      |
| $H \rightarrow \tau \tau$                  | 110-145           | 4.6         | 9        | 20%         | [61]      |
| $H \rightarrow bb$                         | 110-135           | 4.7         | 5        | 10%         | [62]      |
| $H \to WW^* \to 2\ell 2\nu$                | 110-600           | 4.6         | 5        | 20%         | [63]      |
| $H \rightarrow ZZ^{(*)} \rightarrow 4\ell$ | 110-600           | 4.7         | 3        | 1-2%        | [64]      |
| $H \rightarrow ZZ \rightarrow 2\ell 2\nu$  | 250-600           | 4.6         | 2        | 7%          | [65]      |
| $H \to ZZ^{(*)} \to 2\ell 2q$              | { 130–164 200–600 | 4.6         | 6        | 3%<br>3%    | [66]      |
| $H \to ZZ \to 2\ell 2\tau$                 | 190-600           | 4.7         | 8        | 10-15%      | [67]      |

## **Example: CMS Higgs Combination**

#### CPU requirements

- toy evaluation for CLs+b and CLb typically ~1min
- μ (95% CL) typically determined from O(1000) toys per mass hypothesis and O(10) discrete values of μ
- results in ~3 CPU years
- calculation can be parallelized. Submission of O(10000) grid jobs, i.e. results can be obtained within a few days
- alternative statistical method (asymptotic calculation) can be used to speed up the process



20

## What works, what can be improved

- CMS (and other experiments) are able to perform complex analyses
  - task becomes more complex as we search for rare processes
- Access to large data and MC samples is challenging
  - changing conditions require new productions and reprocessing
  - latencies in production and distribution
  - tails in availability limit the final result
  - data driven techniques limit the dependency on MC
- Computing resources
  - binding of CPU with data location has large overhead and causes inefficiency
- Advanced software frameworks based on common tools
  - GEANT for simulation
  - standard MC generator or interfaces
  - ROOT is main analysis framework
    - includes classes for statistical analysis

21

## Summary

- General characteristics of an analysis in high energy physics
- Event samples in various high energy physics experiments
- Example analysis: H→WW in CMS
- Statistical interpretation: Combination of Higgs searches in CMS
- What works, what can be improved

LHC Higgs results will be updated for ICHEP this summer

Markus Klute - MIT