# Current Grid operation and future role of the Grid

Oxana Smirnova Lund University / NeIC CHEP12, New York, 22 May 2012

using input from various Grid organizations

#### Context: HEP

# HEP communities kick-started Grids, and remain dominant users

#### Context: HEP

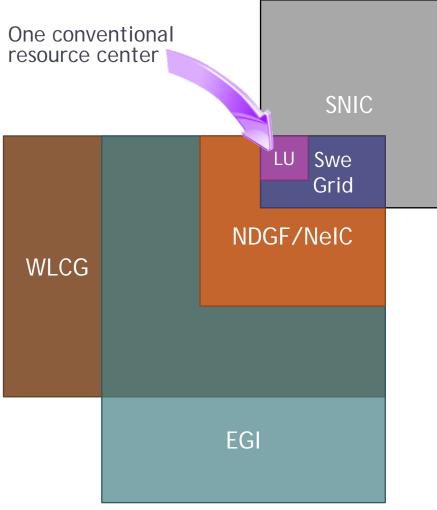
- Fact: Grid is an integral part of most HEP experiments
- Fused with generic research infrastructures
- HEP "vendor lock": Scientific Linux etc
- Operational homogeneity obscures technical deficiencies



- No ownership homogeneity
- Different administrative domains
  - National projects are often a priority
- Not everything called "Grid" actually uses Grid technologies
  - For purposes of this talk:

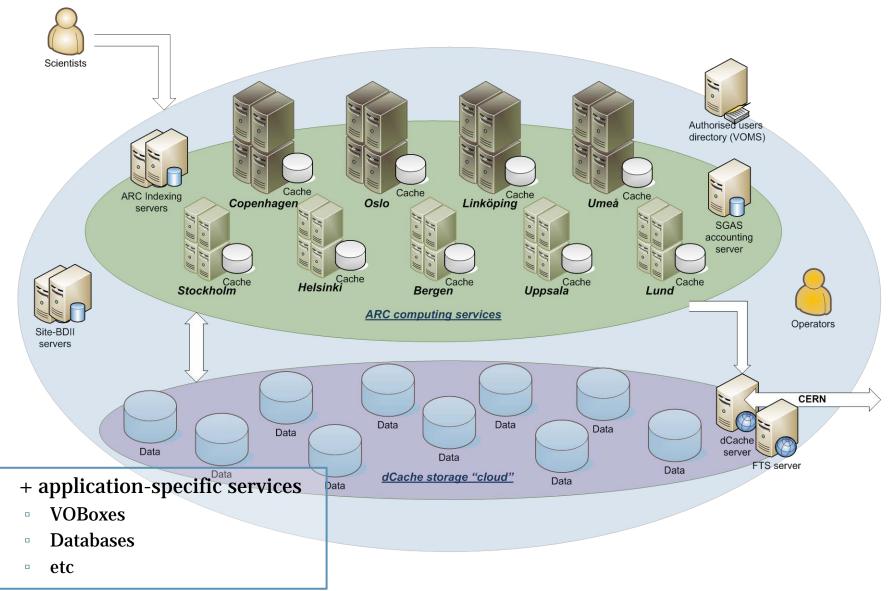
Grid is a federation of heterogeneous conventional systems, enabled by fast networks and a middleware layer that provides single sign-on and delegation of access rights through common interfaces for basic services

• No guarantee it suits <u>all</u> other researchers

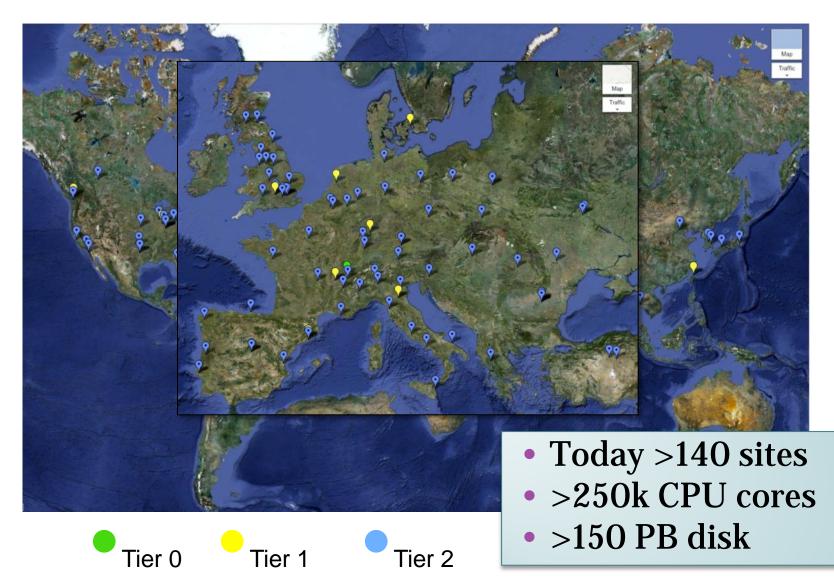

#### HEP Grid operation model: hierarchy

- Originally motivated by relatively slow networks: data processing was faster than data movement
  - Grid paradigm itself was motivated by <u>fast</u> networks
- Tiers are often coupled to national Grid projects

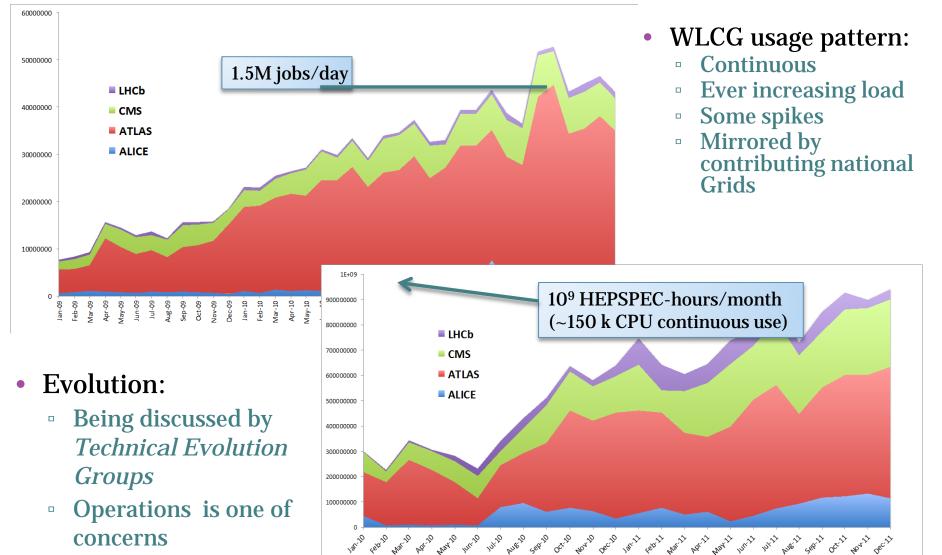



- Technically, hierarchy is not needed
  - Mostly operational necessity: Regional Operating Centers (ROC)
  - Really fast networks are still too expensive

### Real operations: complexity




| <ul> <li>An example: a Linux cluster in Lund<br/>University is a part of</li> </ul> |  |                                        |  |  |
|-------------------------------------------------------------------------------------|--|----------------------------------------|--|--|
|                                                                                     |  | National infrastructure (SNIC)         |  |  |
|                                                                                     |  | National Grid Infrastructure (SweGrid) |  |  |
|                                                                                     |  | Regional infrastructure (NeIC)         |  |  |
|                                                                                     |  | Continental Grid infrastructure (EGI)  |  |  |
|                                                                                     |  | Worldwide Grid infrastructure (WLCG)   |  |  |
| Each infrastructure is not fully uniform                                            |  |                                        |  |  |
|                                                                                     |  | Different contributors                 |  |  |
|                                                                                     |  | Different users/applications           |  |  |
|                                                                                     |  | Different middlewares                  |  |  |
|                                                                                     |  | Different policies and priorities      |  |  |
|                                                                                     |  | Different funding cycles               |  |  |
|                                                                                     |  | And they overlap                       |  |  |
| • Each user expects top service leve                                                |  |                                        |  |  |
|                                                                                     |  | Hardware failures affect them all      |  |  |


#### A small Grid infrastructure: NDGF



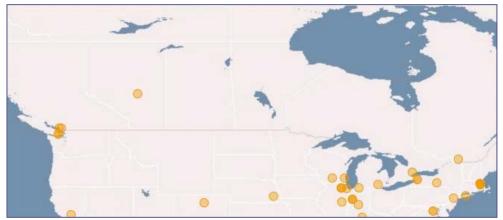
### Larger picture: WLCG Grid Sites



# WLCG usage: continues to grow



## Multi-science Grids


Grid user communities are very many, but few are as large as HEP to afford own resources, so they use existing infrastructures

#### Beyond WLCG: more complexity

- Europe: EGI-rooted hierarchy
  - Centralized operations relying on ROCs and National Grid Initiatives (NGI)
  - Actively engaged in collaboration with Asian, African and Latin American Grid initiatives
- Asia Pacific: collaboration
  - NGI-based model is not always feasible
  - Successful model: APGI and APROC, affiliated with EGI
- Latin America: collaboration
  - LGI rooted in NGIs and Equivalent Domestic Grid Structures (EDGS)
  - Strong cooperation with Europe
- USA: federations
  - Infrastructures largely defined by technologies
  - May contribute to each other, like OSG contributes to XSEDE
- Canada: a consortium
  - Includes WestGrid
- Africa: projects
  - Mediterranean collaboration via EUMedGrid
  - South Africa: established National Grid
- Australia and New Zealand: collaboration
  - ARCS National Grid

#### EGI Resource Centres (April 2012)









# EGI Metrics (April 2012)

| Metrics                 | Value (Yearly increase) |                                                              |                                                                |
|-------------------------|-------------------------|--------------------------------------------------------------|----------------------------------------------------------------|
| Installed Capacity      | Logical CPUs            | EGI-InSPIRE and EGI<br>Council members                       | 270,800 (+30.7%)                                               |
|                         |                         | Including integrated RPs                                     | 399,300                                                        |
|                         | HEP-SPEC<br>06          | EGI-InSPIRE and EGI<br>Council members and<br>integrated RPs | 2.96 Million (+49.5%)                                          |
|                         | Storage                 | Disk (PB)                                                    | 139 PB (+31.4%)                                                |
|                         |                         | Tape (PB)                                                    | 134.3 PB (+50%)                                                |
| <b>Resource Centres</b> | EGI-InSPIRE a           | and EGI Council members                                      | 326                                                            |
|                         | Including integ         | grated RPs                                                   | 352                                                            |
|                         | Supporting MP           | Ν                                                            | 90                                                             |
| Countries               | EGI-InSPIRE a           | and Council members                                          | 42                                                             |
|                         | Including integ         | grated RPs                                                   | 54                                                             |
| Performance             | Monthly Availa          | bility/Reliability                                           | 94.50%/95.42%                                                  |
| Utilization             | HEP-SPEC 06             | Hours                                                        | 10.5 Billion (+52.91%)                                         |
|                         | Jobs                    |                                                              | 492.5 Million Jobs /year<br>1.35 Million Jobs/day<br>(+46.42%) |

#### **OSG** resources

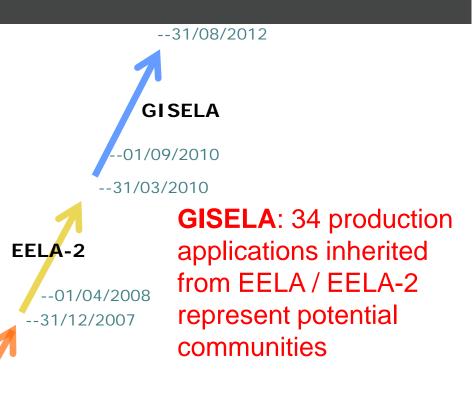
- Resources accessible through the OSG are contributed by the community
  - Their autonomy is retained.
  - Resources can be distributed locally as a campus infrastructure
- >100 sites
- >70,000 cores accessible
- >30 research communities



13

### XSEDE partners




- 16 supercomputers and high-end visualization and data analysis resources
- HTC resources: OSG, Condor Pool
- >10000 scientists

#### Latin American Grid Sites



- 18 Resources Centres provide skilful personnel to support and develop services in the region
- 435 trained users / 73 inst.
- 1794 cores platform
- Operation 24/7





**GISELA** e-Infrastructure inherited from EELA and EELA-2

EEL

-01/01/2006

#### Africa & Arabia Grid sites



# Analysis

#### All Grid infrastructures face similar challenges

#### Mixed messages

- Current Grid operation is a mixture of:
  - cross-national application-specific domains (WLCG, EUMedGrid etc)
  - generic national domains (USA, Canada etc)
  - overall coordinating bodies (EGI)
- Different levels of expertise within each domain and between domains
- Different service levels
- Different middlewares and other technologies, especially between domains
- Convergence, even within a domain, is not always easy
- Resource provider perspective:
  - Centralized operations are good: real-time monitoring, downtime handling, upgrades, issue tracking etc
  - Overall performance figures matter
  - Like security



- User community perspective:
  - Every failed job or file transfer is a catastrophe
  - Prefer to seek help within the community
  - Hate security
- Nobody likes buggy middleware
- Nobody likes middleware updates

# Grid operations challenges

- Middleware design problems are solved by operational means
  - Service keeps acting up put a babysitter next to it
- Hardware failures and software bugs are unavoidable
  - Minor event on a local scale can become a major global issue
- Non-uniformity and non-predictability
  - Resource owners prefer standard services and predictable usage patterns
  - Users prefer their own ways
- Difficult to coordinate maintenance slots and users' activities
  - Technically, all sites can shut down simultaneously
- Mixed policies: no common authority
- Complex service levels and critical services definitions
  - What is critical for one VO is non-important for others
  - Different monitoring levels
  - Incident response different priorities
  - Users keep watch 24/7
  - Operators work 8/5 and use different tools
- Reliable operations are rather expensive



### Theory vs practice

#### Theory

- Grid by nature is a technology to federate resources; viable Grid organizations must be based on federation principles
  - different owners, different consumers, different technology
  - standardized service levels and interfaces
- Data storage and handling is secondary to computing

#### **Practice**

- Many Grid organizations are still heavily rooted in HEP
  - Technologies and policies are largely driven by WLCG needs – de facto standards
  - Global Grid standardization pace has slowed down, lacking support from user communities
- Data storage and handling is the source of most problems

## If we want to build real Grids

#### Do

- Collaboration
  - Federated operations
- Common standardization and convergence effort
  - Common forum
  - Rare exceptions and minor modifications are allowed
- Common practice Open Source development and distribution
- Common "exchange" to share excess resources
  - Somewhat academic, as there is no excess yet
- Take good care of data
  - Storage and access
  - Transfer

#### Don't

- Single-rooted hierarchy
  - Globalized monitoring and support
- Selected core technologies
  - Preferred systems or architectures
- Proprietary code and distribution via e-mail
- Privileged VOs
  - Everybody can be a user
  - Everybody can be a resource provider, too
- Prioritize computing over data
  - We can not re-use storage like we re-use CPUs

### The Cloud elephant in the room

- Research e-Infrastructure sustainability relies on ever increasing need for computing and storage capacities
  - Public funding
  - Grid business model: countries invest as much as they can, researchers use as much as they need
    - Works as long as we are much cheaper than commercial providers
    - Keeps national funding inside countries
- Cloud technologies look appealing (Cycle Computing: 50000 cores á 5000 USD/hour)
  - If we trust commercial clouds with our data
  - If we can offer services comparable to commercial providers for lower costs
    - How?
    - Who?



# Familiar patterns

Parallels with transportation services, though not exact, help putting the technology progress into context

23

#### Personal use - workstations



Everybody likes to have one or two



### Customized shared service - Grids

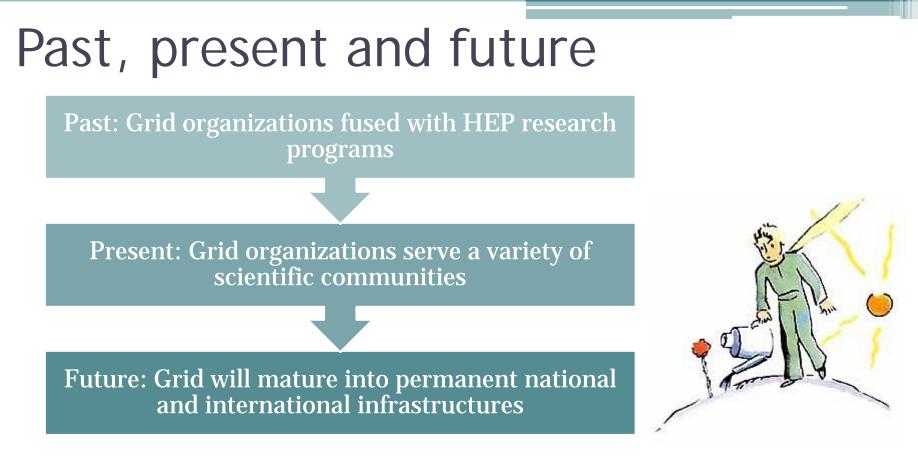


# There is always demand and supply

- Opinions 10 years ago: Grid will make local computing obsolete
- Reality: most scientific computing is still local
  - Successful distributed computing stories are so rare, they get press releases

#### Generic shared service - Clouds




Now exists for computing and data storage

- Opinions today: Clouds will make Grid obsolete
- Reality in future: Grid is likely to stay as long as diverse specialized facilities exist



### Vision

#### Knowing past and present, we can try to predict future



- We adopted the Grid, its future is our responsibility
  - Ignore standardization and common practices Grid will become limited to HEP & Co
  - Serious investment in standard approaches Grid will become useful for everybody

#### Further into future

#### All the mentioned technologies will be used but something else will come



- There will be use cases that will require different technologies
  - Currently, core infrastructure is the same for all existing distributed computing paradigms
- Truly new technologies will come with new core infrastructures
  - Different processing units, different network protocols, different media, different operating system principles etc

#### Conclusions

- Grid works (for ~1% of all scientists)
  - Allows LHC to achieve scientific results almost instantaneously
- Operations are complex and costly
  - Still immature middleware and faulty hardware
  - Highly customized very different application frameworks
  - Different resource ownership and service levels
- Clouds will not make Grids cheaper or redundant
  - But surely will add extra complexity
- Grid is here to stay
  - Scientific data will always be distributed
  - Global science is a <u>collaborative</u> effort, and so is Grid
- Standardization and convergence to common approaches is badly needed
  - Otherwise Grid efficiency will remain relevant only to few selected applications, like HEP
- Something totally different will certainly come