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Motivation for multi-core processing 

 Simplistic utilization of multi-core CPUs by HEP 

 Independent application processes per core executed each 

processing independent sets of events 

 This model has been effective but we could better exploit 

the multi-core architecture 

 RAM available in Worker Nodes is a limitation 

 Experiment event processing code is memory hungry 

 Especially given increased number of collisions per event in LHC 

 We might soon not be able to satisfy the job memory 

needs per core in the current single-core processing 

model in HEP 

 Most deployed WNs have up to 2 GB RAM/core 

 Event processing code straggling to keep below 

 Problems already in 2011 to use all cores at the Tier-0 

 

 

21 May 2012 Multicore processing and scheduling in CMS 2 



José Hernández   

Motivation for multi-core processing 

 An ever increasing number of independent and 

incoherent jobs running on the same physical hardware 

not sharing resources might significantly  affect 

processing performance 

 Experiment job management systems need to scale with 

the increasing number of jobs 

 CMS at the scale of ~200k jobs/day 

 Significant hardware and human resources 

 It will be important to effectively utilize the multi-core 

architecture 

 Need to efficiently use allocated cores since VO billed 

by all of them 
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Multicore processing in CMS 

 Multi-core aware applications can improve memory sharing and 

processing performance 

 Multi-core processing jobs share common data in memory, such us 

the code libraries, detector geometry and conditions data, resulting 

in a much lower memory usage than standard single-core 

independent jobs 

 CMS has incorporated support for multi-core processing in the 

CMSSW event processing framework 

 Initial simple approach: CMSSW forking 

 Main process forks a number of child processes 

 Parallelize event processing within the same job 

 CMS is investigating as well the threading approach 

 Sub-event parallelization: use multiple cores per event 

 See contribution 194: Study of a Fine Grained Threaded Framework 

Design 
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CMSSW forking implementation 

 Parent process reads configuration, loads processing 

modules, pre-fetches geometry, calibrations and other 

conditions data 

 Parent forks a number of child processes 

 Child processes share parent (read-only) memory  

 Children process a fraction of the input file 

 When child processes are done, parent merges results 

and stages out the output files into mass storage 
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Forked multi-processing overheads 

Expect some small overhead in current implementation of 
forked multi-processing w.r.t. single-core processing 

 Processing time dispersion 

 Number of events to process by each child set up front 

 Will result in idle time of N-1 cores waiting for all cores to finish 

 Merging of output files 

 Job wrapper needs to merge child processes output files 

 Local merging largely minimizes asynchronous merging present 
in all CMS data processing workflows  

 Implementation choice (it could be skipped or parallelized) 

 Stage-out of output files into mass storage 

 The parent process also consumes some RAM   

  Processing dispersion and merging overheads could be overcome by 
    using a more complex multi-processing scheme 
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Multicore scheduling in CMS 

 Exploiting this new processing model requires a new model in 

computing resource allocation, departing from the standard single-

core allocation for a job.  

 The experiment job management system needs to have control 

over a larger quantum of resource since multi-core aware jobs 

require the scheduling of multiples cores simultaneously 

 CMS has incorporated support for multi-core scheduling in its 

workload management system  

 CMS has explored two approaches for multi-core allocation: 

 Dedicated resources of whole-nodes where all cores of a node are 

allocated to a multi-core job 

 Dedicated whole-node queues  with few nodes at all 7 T1s 

 Dedicated queues that provide nodes with a fixed number of cores 

(not necessarily the whole node) from a shared farm 

 Shared queues at KIT Tier-1 and Purdue Tier-2 
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Multi-core allocation 

 Whole-node queues was the initial approach in CMS  

 In the context of the WLCG whole-node task force 

 The idea was to share with other VOs these dedicated resources 

 Allows experiment to manage the whole node 

 Sites did not like partitioning of resources  

 Queues that give access to nodes with a fixed number of cores from 

the shared farm 

 Shared resources with standard single core queues 

 LRMS drains nodes for multicore allocation 

 Dynamic resource allocation 

 LRMS schedules a dynamic number of free cores 

 Jobs (or pilots) specify requirements (#cores, RAM, whole-node) 

 LRMS informs jobs of allocated number of cores 

 In line with recommendation of WLCG  WM TEG 

 Shared resources with standard single core queues 
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Multi-core CPU, RAM, I/O   
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       8 x jobs single core 
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12 GB 

 Running 8 simultaneous single-core 

jobs for comparison 

 Fair comparison with one 8-core job in the 

same machine 

 Higher memory consumption (~25%) 

 12 GB RAM used by machine 

 Machine even uses some swap 

 Almost no idle CPU time on the cores 

of the node 

 Small dips when a job finishes 

 No overhead by local merging (but 

merging has to be asynchronously run 

afterwards)  
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PSS memory 

 Because large portions of physical memory are typically 

shared by processes, the standard measure of memory 

resident set size (RSS) will significantly overestimate 

memory usage 

 PSS (Proportional set size) instead measures each 

application's "fair share" of each shared area to give a 

realistic measure 

 The PSS of a given process (or sub-process of a multi-

core process) depends on the other processes running 

 The CMS framework measures the PSS value of each 

sub-process at the peak RSS value 

 Good indicator of memory consumption by the multi-

core application  
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PSS per processing child  

 Significant PSS reduction by running the application multi-core  

 Data point Ncores=1 calculated filling multicore node with single-core jobs 

 Overall, the memory gain is 25-40% (8-24 cores) 

 Note that the parent process also consumes some RAM (~1GB) 
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Multicore processing inefficiencies 
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Idle time in cores due to: 

 Processing dispersion due 

to fluctuations in event 

processing time 

 Parent process waiting for all 

sub-processes to finish 

 Small relative inefficiency and 

decreases with job length 

 Merging of output files from 

each sub-process 

 ~Constant with job length  

 Stageout of merged output 

files 

 ~Constant with job length 
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Multicore processing overhead 
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Adding up processing 

dispersion, merging and 

stageout overheads: 

Asymptotical overhead of 

~6% for sufficiently long jobs 

(due to merging) 

 Typical production jobs are 

~8-12 hour long 

 Merge could be skipped or 

parallelized 

Slightly higher overhead for 

short jobs when larger number 

of cores used 

 Due to higher processing 

dispersion 

 

 



José Hernández   

Multicore throughput 

 Same throughput (events/sec/core) at steady processing for single- 

and multi-core processing modes 

 ~Same high CPU efficiency (CPU time over wallclock time) 
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Prospects 

 The CMS workload management system fully supports 

multi-core scheduling and execution 

 Extensively tested but only at a modest scale  

 Few dedicated whole-nodes at all 7 Tier-1 sites and some access to 

shared resources with single-core jobs (at Purdue and KIT)  

 Up to 100 multi-core jobs running in parallel 

 Plan to increase the resources available for multi-core 

processing at the Tier-1s 

 Shared with single-core jobs (LRMS allocates N cores)  

 Potential gain as well for the Tier-0 where resources in 

2011 were limited by memory consumption 
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Summary and conclusions 

 Significant memory gain (~25-40% for 8-24 cores) 

 Important to keep reconstruction application memory footprint below 

2 GB/core  

 Small CPU overhead in current implementation of multicore 

processing 

 ~ 6% for > 2-hour long jobs 

 Essentially due to the merging of output files from each sub-process 

 Merging step in the reconstruction workflow very much 

suppressed 

 Number of processing jobs very much reduced 

 Allows to scale down our WMS 

 CMS ready to go multi-core for data processing workflows 
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