
Multi-core processing and

scheduling performance in

CMS

José Hernández (CIEMAT), Dave Evans (FNAL), Steve Foulkes (FNAL)

XIX International Conference on Computing

in High Energy and Nuclear Physics

José Hernández

Motivation for multi-core processing

 Simplistic utilization of multi-core CPUs by HEP

 Independent application processes per core executed each

processing independent sets of events

 This model has been effective but we could better exploit

the multi-core architecture

 RAM available in Worker Nodes is a limitation

 Experiment event processing code is memory hungry

 Especially given increased number of collisions per event in LHC

 We might soon not be able to satisfy the job memory

needs per core in the current single-core processing

model in HEP

 Most deployed WNs have up to 2 GB RAM/core

 Event processing code straggling to keep below

 Problems already in 2011 to use all cores at the Tier-0

21 May 2012 Multicore processing and scheduling in CMS 2

José Hernández

Motivation for multi-core processing

 An ever increasing number of independent and

incoherent jobs running on the same physical hardware

not sharing resources might significantly affect

processing performance

 Experiment job management systems need to scale with

the increasing number of jobs

 CMS at the scale of ~200k jobs/day

 Significant hardware and human resources

 It will be important to effectively utilize the multi-core

architecture

 Need to efficiently use allocated cores since VO billed

by all of them

21 May 2012 Multicore processing and scheduling in CMS 3

José Hernández

Multicore processing in CMS

 Multi-core aware applications can improve memory sharing and

processing performance

 Multi-core processing jobs share common data in memory, such us

the code libraries, detector geometry and conditions data, resulting

in a much lower memory usage than standard single-core

independent jobs

 CMS has incorporated support for multi-core processing in the

CMSSW event processing framework

 Initial simple approach: CMSSW forking

 Main process forks a number of child processes

 Parallelize event processing within the same job

 CMS is investigating as well the threading approach

 Sub-event parallelization: use multiple cores per event

 See contribution 194: Study of a Fine Grained Threaded Framework

Design

21 May 2012 Multicore processing and scheduling in CMS 4

José Hernández

CMSSW forking implementation

 Parent process reads configuration, loads processing

modules, pre-fetches geometry, calibrations and other

conditions data

 Parent forks a number of child processes

 Child processes share parent (read-only) memory

 Children process a fraction of the input file

 When child processes are done, parent merges results

and stages out the output files into mass storage

21 May 2012 Multicore processing and scheduling in CMS 5

Input

Child1

Child2

ChildN

Output1

Output2

OutputN

Merged

output
SE

Parent Geometry

Conditions

Modules

José Hernández

Forked multi-processing overheads

Expect some small overhead in current implementation of
forked multi-processing w.r.t. single-core processing

 Processing time dispersion

 Number of events to process by each child set up front

 Will result in idle time of N-1 cores waiting for all cores to finish

 Merging of output files

 Job wrapper needs to merge child processes output files

 Local merging largely minimizes asynchronous merging present
in all CMS data processing workflows

 Implementation choice (it could be skipped or parallelized)

 Stage-out of output files into mass storage

 The parent process also consumes some RAM

 Processing dispersion and merging overheads could be overcome by
 using a more complex multi-processing scheme

21 May 2012 Multicore processing and scheduling in CMS 6

José Hernández

Multicore scheduling in CMS

 Exploiting this new processing model requires a new model in

computing resource allocation, departing from the standard single-

core allocation for a job.

 The experiment job management system needs to have control

over a larger quantum of resource since multi-core aware jobs

require the scheduling of multiples cores simultaneously

 CMS has incorporated support for multi-core scheduling in its

workload management system

 CMS has explored two approaches for multi-core allocation:

 Dedicated resources of whole-nodes where all cores of a node are

allocated to a multi-core job

 Dedicated whole-node queues with few nodes at all 7 T1s

 Dedicated queues that provide nodes with a fixed number of cores

(not necessarily the whole node) from a shared farm

 Shared queues at KIT Tier-1 and Purdue Tier-2

21 May 2012 Multicore processing and scheduling in CMS 7

José Hernández

Multi-core allocation

 Whole-node queues was the initial approach in CMS

 In the context of the WLCG whole-node task force

 The idea was to share with other VOs these dedicated resources

 Allows experiment to manage the whole node

 Sites did not like partitioning of resources

 Queues that give access to nodes with a fixed number of cores from

the shared farm

 Shared resources with standard single core queues

 LRMS drains nodes for multicore allocation

 Dynamic resource allocation

 LRMS schedules a dynamic number of free cores

 Jobs (or pilots) specify requirements (#cores, RAM, whole-node)

 LRMS informs jobs of allocated number of cores

 In line with recommendation of WLCG WM TEG

 Shared resources with standard single core queues

21 May 2012 Multicore processing and scheduling in CMS 8

José Hernández

Multi-core CPU, RAM, I/O

21 May 2012 Multicore processing and scheduling in CMS 9

CPU

Network

RAM

1

 Example typical 8-core

reconstruction job

 7 outputs: AOD, RECO, DQM,

4 alcareco’s

 Processing dispersion

 Small overhead (~1 min)

 Merging output files

 Small overhead (~5 min)

 Stageout output file (~2 min)

 Fast (few GB/min)

 ~9 GB RAM used by the machine

1

2

2

3

3

4

4

José Hernández

 8 x jobs single core

21 May 2012 Multicore processing and scheduling in CMS 10 27 January 2012 10

12 GB

 Running 8 simultaneous single-core

jobs for comparison

 Fair comparison with one 8-core job in the

same machine

 Higher memory consumption (~25%)

 12 GB RAM used by machine

 Machine even uses some swap

 Almost no idle CPU time on the cores

of the node

 Small dips when a job finishes

 No overhead by local merging (but

merging has to be asynchronously run

afterwards)

José Hernández

PSS memory

 Because large portions of physical memory are typically

shared by processes, the standard measure of memory

resident set size (RSS) will significantly overestimate

memory usage

 PSS (Proportional set size) instead measures each

application's "fair share" of each shared area to give a

realistic measure

 The PSS of a given process (or sub-process of a multi-

core process) depends on the other processes running

 The CMS framework measures the PSS value of each

sub-process at the peak RSS value

 Good indicator of memory consumption by the multi-

core application

21 May 2012 Multicore processing and scheduling in CMS 11

José Hernández

PSS per processing child

 Significant PSS reduction by running the application multi-core

 Data point Ncores=1 calculated filling multicore node with single-core jobs

 Overall, the memory gain is 25-40% (8-24 cores)

 Note that the parent process also consumes some RAM (~1GB)

21 May 2012 Multicore processing and scheduling in CMS 12

José Hernández

Multicore processing inefficiencies

21 May 2012 Multicore processing and scheduling in CMS 13

Idle time in cores due to:

 Processing dispersion due

to fluctuations in event

processing time

 Parent process waiting for all

sub-processes to finish

 Small relative inefficiency and

decreases with job length

 Merging of output files from

each sub-process

 ~Constant with job length

 Stageout of merged output

files

 ~Constant with job length

José Hernández

Multicore processing overhead

21 May 2012 Multicore processing and scheduling in CMS 14

Adding up processing

dispersion, merging and

stageout overheads:

Asymptotical overhead of

~6% for sufficiently long jobs

(due to merging)

 Typical production jobs are

~8-12 hour long

 Merge could be skipped or

parallelized

Slightly higher overhead for

short jobs when larger number

of cores used

 Due to higher processing

dispersion

José Hernández

Multicore throughput

 Same throughput (events/sec/core) at steady processing for single-

and multi-core processing modes

 ~Same high CPU efficiency (CPU time over wallclock time)

21 May 2012 Multicore processing and scheduling in CMS 15

José Hernández

Prospects

 The CMS workload management system fully supports

multi-core scheduling and execution

 Extensively tested but only at a modest scale

 Few dedicated whole-nodes at all 7 Tier-1 sites and some access to

shared resources with single-core jobs (at Purdue and KIT)

 Up to 100 multi-core jobs running in parallel

 Plan to increase the resources available for multi-core

processing at the Tier-1s

 Shared with single-core jobs (LRMS allocates N cores)

 Potential gain as well for the Tier-0 where resources in

2011 were limited by memory consumption

21 May 2012 Multicore processing and scheduling in CMS 16

José Hernández

Summary and conclusions

 Significant memory gain (~25-40% for 8-24 cores)

 Important to keep reconstruction application memory footprint below

2 GB/core

 Small CPU overhead in current implementation of multicore

processing

 ~ 6% for > 2-hour long jobs

 Essentially due to the merging of output files from each sub-process

 Merging step in the reconstruction workflow very much

suppressed

 Number of processing jobs very much reduced

 Allows to scale down our WMS

 CMS ready to go multi-core for data processing workflows

21 May 2012 Multicore processing and scheduling in CMS 17

