
Multi-core processing and

scheduling performance in

CMS

José Hernández (CIEMAT), Dave Evans (FNAL), Steve Foulkes (FNAL)

XIX International Conference on Computing

in High Energy and Nuclear Physics

José Hernández

Motivation for multi-core processing

 Simplistic utilization of multi-core CPUs by HEP

 Independent application processes per core executed each

processing independent sets of events

 This model has been effective but we could better exploit

the multi-core architecture

 RAM available in Worker Nodes is a limitation

 Experiment event processing code is memory hungry

 Especially given increased number of collisions per event in LHC

 We might soon not be able to satisfy the job memory

needs per core in the current single-core processing

model in HEP

 Most deployed WNs have up to 2 GB RAM/core

 Event processing code straggling to keep below

 Problems already in 2011 to use all cores at the Tier-0

21 May 2012 Multicore processing and scheduling in CMS 2

José Hernández

Motivation for multi-core processing

 An ever increasing number of independent and

incoherent jobs running on the same physical hardware

not sharing resources might significantly affect

processing performance

 Experiment job management systems need to scale with

the increasing number of jobs

 CMS at the scale of ~200k jobs/day

 Significant hardware and human resources

 It will be important to effectively utilize the multi-core

architecture

 Need to efficiently use allocated cores since VO billed

by all of them

21 May 2012 Multicore processing and scheduling in CMS 3

José Hernández

Multicore processing in CMS

 Multi-core aware applications can improve memory sharing and

processing performance

 Multi-core processing jobs share common data in memory, such us

the code libraries, detector geometry and conditions data, resulting

in a much lower memory usage than standard single-core

independent jobs

 CMS has incorporated support for multi-core processing in the

CMSSW event processing framework

 Initial simple approach: CMSSW forking

 Main process forks a number of child processes

 Parallelize event processing within the same job

 CMS is investigating as well the threading approach

 Sub-event parallelization: use multiple cores per event

 See contribution 194: Study of a Fine Grained Threaded Framework

Design

21 May 2012 Multicore processing and scheduling in CMS 4

José Hernández

CMSSW forking implementation

 Parent process reads configuration, loads processing

modules, pre-fetches geometry, calibrations and other

conditions data

 Parent forks a number of child processes

 Child processes share parent (read-only) memory

 Children process a fraction of the input file

 When child processes are done, parent merges results

and stages out the output files into mass storage

21 May 2012 Multicore processing and scheduling in CMS 5

Input

Child1

Child2

ChildN

Output1

Output2

OutputN

Merged

output
SE

Parent Geometry

Conditions

Modules

José Hernández

Forked multi-processing overheads

Expect some small overhead in current implementation of
forked multi-processing w.r.t. single-core processing

 Processing time dispersion

 Number of events to process by each child set up front

 Will result in idle time of N-1 cores waiting for all cores to finish

 Merging of output files

 Job wrapper needs to merge child processes output files

 Local merging largely minimizes asynchronous merging present
in all CMS data processing workflows

 Implementation choice (it could be skipped or parallelized)

 Stage-out of output files into mass storage

 The parent process also consumes some RAM

 Processing dispersion and merging overheads could be overcome by
 using a more complex multi-processing scheme

21 May 2012 Multicore processing and scheduling in CMS 6

José Hernández

Multicore scheduling in CMS

 Exploiting this new processing model requires a new model in

computing resource allocation, departing from the standard single-

core allocation for a job.

 The experiment job management system needs to have control

over a larger quantum of resource since multi-core aware jobs

require the scheduling of multiples cores simultaneously

 CMS has incorporated support for multi-core scheduling in its

workload management system

 CMS has explored two approaches for multi-core allocation:

 Dedicated resources of whole-nodes where all cores of a node are

allocated to a multi-core job

 Dedicated whole-node queues with few nodes at all 7 T1s

 Dedicated queues that provide nodes with a fixed number of cores

(not necessarily the whole node) from a shared farm

 Shared queues at KIT Tier-1 and Purdue Tier-2

21 May 2012 Multicore processing and scheduling in CMS 7

José Hernández

Multi-core allocation

 Whole-node queues was the initial approach in CMS

 In the context of the WLCG whole-node task force

 The idea was to share with other VOs these dedicated resources

 Allows experiment to manage the whole node

 Sites did not like partitioning of resources

 Queues that give access to nodes with a fixed number of cores from

the shared farm

 Shared resources with standard single core queues

 LRMS drains nodes for multicore allocation

 Dynamic resource allocation

 LRMS schedules a dynamic number of free cores

 Jobs (or pilots) specify requirements (#cores, RAM, whole-node)

 LRMS informs jobs of allocated number of cores

 In line with recommendation of WLCG WM TEG

 Shared resources with standard single core queues

21 May 2012 Multicore processing and scheduling in CMS 8

José Hernández

Multi-core CPU, RAM, I/O

21 May 2012 Multicore processing and scheduling in CMS 9

CPU

Network

RAM

1

 Example typical 8-core

reconstruction job

 7 outputs: AOD, RECO, DQM,

4 alcareco’s

 Processing dispersion

 Small overhead (~1 min)

 Merging output files

 Small overhead (~5 min)

 Stageout output file (~2 min)

 Fast (few GB/min)

 ~9 GB RAM used by the machine

1

2

2

3

3

4

4

José Hernández

 8 x jobs single core

21 May 2012 Multicore processing and scheduling in CMS 10 27 January 2012 10

12 GB

 Running 8 simultaneous single-core

jobs for comparison

 Fair comparison with one 8-core job in the

same machine

 Higher memory consumption (~25%)

 12 GB RAM used by machine

 Machine even uses some swap

 Almost no idle CPU time on the cores

of the node

 Small dips when a job finishes

 No overhead by local merging (but

merging has to be asynchronously run

afterwards)

José Hernández

PSS memory

 Because large portions of physical memory are typically

shared by processes, the standard measure of memory

resident set size (RSS) will significantly overestimate

memory usage

 PSS (Proportional set size) instead measures each

application's "fair share" of each shared area to give a

realistic measure

 The PSS of a given process (or sub-process of a multi-

core process) depends on the other processes running

 The CMS framework measures the PSS value of each

sub-process at the peak RSS value

 Good indicator of memory consumption by the multi-

core application

21 May 2012 Multicore processing and scheduling in CMS 11

José Hernández

PSS per processing child

 Significant PSS reduction by running the application multi-core

 Data point Ncores=1 calculated filling multicore node with single-core jobs

 Overall, the memory gain is 25-40% (8-24 cores)

 Note that the parent process also consumes some RAM (~1GB)

21 May 2012 Multicore processing and scheduling in CMS 12

José Hernández

Multicore processing inefficiencies

21 May 2012 Multicore processing and scheduling in CMS 13

Idle time in cores due to:

 Processing dispersion due

to fluctuations in event

processing time

 Parent process waiting for all

sub-processes to finish

 Small relative inefficiency and

decreases with job length

 Merging of output files from

each sub-process

 ~Constant with job length

 Stageout of merged output

files

 ~Constant with job length

José Hernández

Multicore processing overhead

21 May 2012 Multicore processing and scheduling in CMS 14

Adding up processing

dispersion, merging and

stageout overheads:

Asymptotical overhead of

~6% for sufficiently long jobs

(due to merging)

 Typical production jobs are

~8-12 hour long

 Merge could be skipped or

parallelized

Slightly higher overhead for

short jobs when larger number

of cores used

 Due to higher processing

dispersion

José Hernández

Multicore throughput

 Same throughput (events/sec/core) at steady processing for single-

and multi-core processing modes

 ~Same high CPU efficiency (CPU time over wallclock time)

21 May 2012 Multicore processing and scheduling in CMS 15

José Hernández

Prospects

 The CMS workload management system fully supports

multi-core scheduling and execution

 Extensively tested but only at a modest scale

 Few dedicated whole-nodes at all 7 Tier-1 sites and some access to

shared resources with single-core jobs (at Purdue and KIT)

 Up to 100 multi-core jobs running in parallel

 Plan to increase the resources available for multi-core

processing at the Tier-1s

 Shared with single-core jobs (LRMS allocates N cores)

 Potential gain as well for the Tier-0 where resources in

2011 were limited by memory consumption

21 May 2012 Multicore processing and scheduling in CMS 16

José Hernández

Summary and conclusions

 Significant memory gain (~25-40% for 8-24 cores)

 Important to keep reconstruction application memory footprint below

2 GB/core

 Small CPU overhead in current implementation of multicore

processing

 ~ 6% for > 2-hour long jobs

 Essentially due to the merging of output files from each sub-process

 Merging step in the reconstruction workflow very much

suppressed

 Number of processing jobs very much reduced

 Allows to scale down our WMS

 CMS ready to go multi-core for data processing workflows

21 May 2012 Multicore processing and scheduling in CMS 17

