
Parallelization of the AliRoot
event-reconstruction by using
a source-to-source
transformation
 Stefan B. Lohn, CERN

May 24th 2012

CHEP 2012

Introduction

6. Oct. 2011 2

Multi-core CPUs (CMP)

Hardware threads (SMT)

Data parallelism (SIMD)

Socket parallelism (SMP)

Super scalability

Pipeline

Computer cluster

Grid and Cloud computing

Multi-processing
(PROOF-lite)

ALICE need to exploit all available computing
resources and facilities.

Introduction

6. Oct. 2011 3

Multi-core CPUs (CMP)

Hardware threads (SMT)

Data parallelism (SIMD)

Socket parallelism (SMP)

Super scalability

Pipeline

Computer cluster

Grid and Cloud computing

Multi-threading

Multi-processing
(PROOF-lite)

Benefit from multi-threading:
• Fast context switch
• Sharing memory by nature
• Benefit from SMT

Utilization of thread-level parallelism
is unaffordable to gain further performance!

ALICE need to exploit all available computing
resources and facilities.

Objectives

6. Oct. 2011 4

?
A semi-automatic source-to-source
 transformation.

(as investigated from the Geant4-MT Project)

Remaining issues:
• Thread-safety is difficult to introduce
• Parallel programming is labor intensive

Objectives

6. Oct. 2011 5

A semi-automatic source-to-source
 transformation.

(as investigated from the Geant4-MT Project)

Remaining issues:
• Thread-safety is difficult to introduce
• Parallel programming is labor intensive

?

Benefits:
• Faster development process
• No additional development branch
• Without expert knowledge
• User maintain only their sequential code

Objectives

6. Oct. 2011 6

Merging
and Exit

Distribute
events

Read-only
Data Initialize Cleanup

• Full reconstruction per thread
• No interference amongst threads
• Event-level parallelism

Parallel design:

Source-to-Source Transformation

6. Oct. 2011 7

Static
Analysis

Rewriting
Rules

#include <iostream>
#include <TROOT.h>
#include <TRint.h>
Int main(){
 TRint ();
}

#include <iostream>
#include <TROOT.h>
#include <TRint.h>
Int main(){
 TRint ();
}

#include <iostream>
#include <TROOT.h>
#include <TRint.h>
Int main(){
 TRint ();
}

Parsing

AST

Rewriting
(PrettyPrinting)

Source-code
files

Abstract-
Syntax-Tree

User specific
Transformation

Scheme of the source-to-source transformation:

Original Tool:

Augmented GCC parser to
return positioning
information.

Case-based fact extraction
from a token-stream
generated by ELSAs parser.

6. Oct. 2011 8

Static
Analysis

Rewriting
Rules

#include <iostream>
#include <TROOT.h>
#include <TRint.h>
Int main(){
 TRint ();
}

#include <iostream>
#include <TROOT.h>
#include <TRint.h>
Int main(){
 TRint ();
}

#include <iostream>
#include <TROOT.h>
#include <TRint.h>
Int main(){
 TRint ();
}

Parsing

AST

Rewriting
(PrettyPrinting)

Source-code
files

Abstract-
Syntax-Tree

User specific
Transformation

Original Tool:

Augmented GCC parser to
return positioning
information.

No access to AST during rewriting!

Error prone for heterogeneous source-
code like in ROOT and AliRoot
and hard to fix.

Scheme of the source-to-source transformation:

Source-to-Source Transformation

Case-based fact extraction
from a token-stream
generated by ELSAs parser.

6. Oct. 2011 9

Static
Analysis

Rewriting
Rules

#include <iostream>
#include <TROOT.h>
#include <TRint.h>
Int main(){
 TRint ();
}

#include <iostream>
#include <TROOT.h>
#include <TRint.h>
Int main(){
 TRint ();
}

#include <iostream>
#include <TROOT.h>
#include <TRint.h>
Int main(){
 TRint ();
}

Parsing

AST

Rewriting
(PrettyPrinting)

Source-code
files

Abstract-
Syntax-Tree

User specific
Transformation

Original Tool:

Augmented GCC parser to
return positioning
information

Missing Information:
• Kind of types (POD or complex)
• Function decl. with access to globals
• Scope (class, namespace)

Scheme of the source-to-source transformation:

Source-to-Source Transformation

Case-based fact extraction
from a token-stream
generated by ELSAs parser.

10 6. Oct. 2011

Features:
 -> Analysis and rewriting by the same software
 -> Access to AST during rewriting
 -> Fixes all bugs mentioned and further small problems

Static Analysis & Rewriting with Clang
(Clang is the front-end of the LLVM project)

Source-to-Source Transformation

Position Information

1) TTS

6. Oct. 2011 11

TTS

TMR

Verification

Privatization of global
and static declaration

Source-code
adaption

Selection of
sharable classes

Protection for unintended
write access to read-only data

Automated Manual Intervention

1)

2)

3)

The source-code adaption follows 4 important steps:

Manual intervention is following a specific procedure
to adapt source-code. If it is conducted once, it can be automated
for further transformations.

Data-race detection
(Debugging)

Optimization
4) Customized code

optimization

1) TTS

6. Oct. 2011 12

Thread-safety: Access to resources do not lead to unintended interference amongst threads.
The strongest kind is unconditional thread-safety, where there is no interference at all.

Process
Thread 1

Thread N

static int var;

Global/static
declaration

If(!var) then
do A else B

Program text

TLS

TLS

Stack

Stack

1. Recognize concerned declarations:
 The recognition phase is part of the
 static analysis. The aim is to detect
 global and static declarations and to
 collect position information.

2. Privatize recognized declarations:
 For privatization the thread-specifier is used

to allocate the recognized declarations into
thread-local storage (TLS) and to make them
private to threads.

.

.

.

1) TTS for ROOT & AliRoot

13 6. Oct. 2011

Finalize
and Exit

Distribute
events

In practice: Violations by

1. source-code generation (global decl. in CInt)
2. external libraries and non re-entrant functions.
3. common accessible resources.

Can we run in parallel now?

Found (Changed) Statics Globals Extern

AliRoot 2023 (417) 138 (11) 159 (31)

ROOT 3652 (620) 191 (150) 125 (46)

CINT 228 (0) 69 (0) 308 (0)
Only involved soure-code
has been addressed.

2) TMR

6. Oct. 2011 14

TTS

TMR

Verification

Privatization of global
and static declaration

Source-code
adaption

Selection of
sharable classes

Protection for unintended
write access to read-only data

Automated Manual Intervention

1)

2)

3)

The source-code adaption follows 4 important steps:

Manual intervention is following a specific procedure
to adapt source-code. If it is conducted once, it can be automated
for further transformations.

Data-race detection
(Debugging)

Optimization
4) Customized code

optimization

2) TMR

6. Oct. 2011 15

Manual
1. Run memory profiling to find interesting objects. (e.g. Memory graph of massif)
2. Classify and select member fields as transitory.
3. Must not necessarily be correct => Verification later.

Sharing Classes: Since it is uncertain to find whole classes with static content that can be shared,
single member fields can be classified as transitory and will become thread-local in the
transformed source-code. Resting members are assumed to be relative read-only.

Scheme of the transformation for memory footprint reduction (TMR):

Constructor initializes TCint
Ctor init. List of Classes
Ctor init. List of Types

2) TMR to share CInt

16 6. Oct. 2011

TROOT

fBrowsables : Tlist*
fRootFolder : Tfolder*
fTasks : TSeqCollection*
…

GetRootFolder()
GetListOfBrowsable()
GetListOfTasks()
…

Ctor init. ROOT Folders
Ctor init. List of Browsables
Ctor init. List of Tasks

Shall become
relative read-only

Shall become
transitory

Initialization
of TLS data

Access from
Threads

Now:
1. TROOT stay a singleton
2. Type information are shared
3. TCInt is shared

Involved: TClass, TClassTable and others.

And: Type information (reflex information) has
to be loaded in advance. Resting write access
must be serialized.

3) Verification

6. Oct. 2011 17

TTS

TMR

Verification

Privatization of global
and static declaration

Source-code
adaption

Selection of
sharable classes

Protection for unintended
write access to read-only data

Automated Manual Intervention

1)

2)

3)

The source-code adaption follows 4 important steps:

Manual intervention is following a specific procedure
to adapt source-code. If it is conducted once, it can be automated
for further transformations.

Data-race detection
(Debugging)

Optimization
4) Customized code

optimization

3) Verification

6. Oct. 2011 18

Which violation of correctness can occur?

1) Race condition, because of resting global state
2) Race condition, if read-only data are written
3) Access to common resources (process resources, e.g. files, sockets, locks)
4) Semantic relations between resources and global decl.

Solutions:
• 1) & 2) can be detected using dynamic data-race detection tools like helgrind.
• 2) can easier be detected with the MWP Tool
• 3) can whether be detected by race detection or by static analysis
• Semantic relations can be detected by Bisimulation

3) Verification

6. Oct. 2011 19

Heap

Protected
memory

Read-only data

Unintended write op. Legal read op.

Verification of TMR:

transitory

read-only transitory

read-only

Actual
False
classification

No violation

Violation!

Class member

Single thread

Memory Write
Protection Tool
(MWPT):

3) Verification

6. Oct. 2011 20

Heap

Protected
memory

Read-only data

Unintended write op.

Print ptrace report
SIGV

Remove protection
and re-execute last
function.

Legal read op.

Verification of TMR:

transitory

read-only transitory

read-only

Actual
False
classification

No violation

Violation!

Class member

Single thread

SIGUSR

Memory Write
Protection Tool
(MWPT):

3) Verification

21 6. Oct. 2011

Call1()

Call2()

Call3()

Call2.1()

Call1()

Call2()

Call3()

Call2.1()

Call2.1()

Misbehaviour:

Where is 2nd (2.2) call?

A: Sequential (original) code B: Multi-threaded (adapted) code

Bisimulation:

Gdb with A

Gdb with B

Brakpoint: Call2

Breakpoint: Call2

Compare behavior

6. Oct. 2011 22

What about performance ?

Testing Event Reconstruction

6. Oct. 2011 23

Initialization: Divided into 4 steps
1. Creation of reflex data in advance.
2. Preparation of data for shared classes.
3. Per thread: Instantiation of global declaration.
4. Per thread: Initialization of Reconstruction.

Extraction & Merging: Prepare data by loading,
extracting and distributing them to the
reconstruction threads. Merge the resulting files
per threads in the end.

Termination & Exit: During exit objects are
going to be deleted, object in container must be
cleaned, what is now executed during termination for
thread dedicated resources.

Concurrent Processing: Parallel event reconstruction.
Currently no master-worker paradigm used.

Merging

multiple
threads
…

Extract

Initialization

Termination

Exit

Concurrent
processing

Test Setup

Testing Event Reconstruction

6. Oct. 2011 24

200 p-p events (red)
vs. 20 Pb-Pb events (blue)

ITS only, no QA

Max. Speedup of parallel

processing only:
4.9 (p-p), 5.6 (Pb-Pb)

Test machine: 12 core Intel
Westmere. 2.6 GHz, 12 MB

LL cache.

Synchronization avoids scalability. Led-Led processing is more computing intensive and
uses less synchronization. Hence it scales better.

Testing Event Reconstruction

6. Oct. 2011 25

• The parallel initialization is locked and affects performance.
• Local reconstruction is the slowest task, due to intense IO.

Performance characteristic:
1. 3,95 M calles of

_tls_get_addr per pp-
event. 1.45% of runtime.

2. 350k mutexes acquired per
event, thereof around 90k
Tstorage::Alloc*

3. Around 360k times
malloc/free per event,
1.16% of runtime.

Testing Event Reconstruction

6. Oct. 2011 26

200 p-p events
vs. 20 led-led events

ITS only, no QA

Memory per thread:

400 MB (pp), 800 MB
(PbPb)

Only Cint & TROOT shared.

Test machine: 12 core Intel
Westmere. 2.6 GHz, 12 MB

LL cache.

Each thread has an opened set of files for reading raw data and writing down results.
For a Led-Led run these consume 200 MB and for a p-p run 133 MB virtual memory.

Conclusions

6. Oct. 2011 27

Transformation:
1. Introducing multi-threading without expert knowledge is possible.
2. Rewriting with the current tool is sophisticated and error-prone. It can be improved

by using a new Clang front-end.

Performance:
1. Speedup of a Led-Led run rose to 5.6 with 8 threads.
2. Memory consumption is reduced by around 100 MB. Led-led reconstruction

footprint still rises to 600 MB virtual memory per thread.
3. More memory can be shared, e.g. Geometry and CDB data.
4. Prototype can be used to evaluate performance for first design

Correctness:
1. With helgrind and MWPT, practical concerns can be evaluated.
2. All concerns of correctness have been addressed by provided tool.
3. Since validation and the corresponding tools are hard to apply,
 many items are not jet fixed appropriate, leading to instability.

6. Oct. 2011 28

Questions?

