
 Enormous amount of data to be processed and analyzed ().

 Impossible to implement a unique CERN analysis facility

 Boost of the development of the grid computing infrastructure and technology.

Reacting to database and network instabilities in CORAL

 Enormous amount of data to be processed and analyzed (hundreds of petabytes over the whole lifetime).

 Impossible to implement a unique CERN analysis facility

 Boost of the development of the grid computing infrastructure and technology.

 A distributed analysis model

implies an in-homogeneity in the

data storage infrastructure across

the different institutes and across

the long LHC lifetime.

 The computing infrastructure

has to be easily maintainable and

adaptable.

 POOL is a generic hybrid store for C++ objects, metadata catalogues and collections,
using streaming and relational technologies.

 COOL provides specific software to handle the time variation and versioning of

conditions data.

 CORAL is a generic abstraction layer

with an SQL-free API for accessing

relational databases.

 Enormous amount of data to be processed and analyzed (hundreds of petabytes over the whole lifetime).

 Impossible to implement a unique CERN analysis facility

 Boost of the development of the grid computing infrastructure and technology.

Why

CORAL ?

Users write the same code for all back-ends

A detailed knowledge of the many SQL flavors is not

required

The SQL commands specific to each backend are

executed by the relevant CORAL libraries, which are

loaded at run-time by a special plugin infrastructure.

CORAL provides a set of C++ libraries

for several database back-ends:

local access to SQLite files;

direct client access to Oracle and

MySQL servers;

read-only access to Oracle through the

FroNTier/Squid or

CoralServer/CoralServerProxy

server/cache system.

The connection process to break the tunnel, simulating the break of the connection.

When a network glitch

occurs, the reaction of

CORAL should depend on

the type and status of the

session and transaction.

Begin Session

Transaction RW,
read committed

Transaction RO,
serializable

Transaction RO, read
committed

Update statement

Commit

Reconnect

Read statement

Select

Reconnect

Read statement

Select

Reconnect

T0

T1

NO! Data loss
NO! Wrong

snapshot
YES!!!!!

The validity of the connection and session is checked at the beginning of all crucial instructions

(whenever the OCI service context handle is needed). A probe function has been implemented using the

OCIServerVersion function to checks the server accessibility.

If a network glitch is detected, CORAL reacts in the following way:

 If the transaction is not active yet, CORAL triggers a reconnection for any type of session;

 If a transaction is already active, CORAL triggers a reconnection only if the transaction has been

started in RO read committed mode.

The reconnection procedure creates a new physical connection and starts a new user session.

CORAL achieves this by refreshing all OCI handles without de-allocating and re-allocating them.

A connection is a "physical circuit", a pathway to a database.

A session is a user process in communication with a server

process. Users establish sessions against the instance, and the

instance then manages the access to the database.

ORA-03113!!!
During the last two years the three experiments that make use of CORAL

(ATLAS, CMS and LHCb) experienced a similar issue: an Oracle error

appeared during the execution of some operations against the Oracle

database, even though in different circumstances.

The Oracle error found is: ORA-03113

In some cases, this triggered an infinite loop and caused an application hang.

As reported by the Oracle site:
“ORA-03113: end-of-file on communication channel

Cause: The connection between Client and Server process was broken.

Action: There was a communication error that requires further investigation. ”

The most likely cause of this issue is an instability of the network, leading

to a temporary connection break between client and server.

GLITCH

session = svc.connect(tunnelUrl,
coral.access_ReadOnly)

transaction = session.transaction()

transaction.start(True)

schema =
session.nominalSchema()

query =
schema.tableHandle(tableName).
newQuery()

cursor = query.execute()

 Create the physical connection

and start a user session

 Retrieve a transaction handle

 Start a transaction

 Retrieve a schema handle

 Create a query

 Execute the query

During the analysis of the network glitch two other bugs have been identified, both related to the deletion

order of the relevant CORAL objects (e.g. Session).

The first bug was that the destructors of many CORAL objects (e.g. Query) were using a Session already

deleted. A shared pointer to the Session has been defined to keep it alive longer than all other objects.

The second bug was due to a wrong deletion order for OCI handles. Internally, most OCI handles (e.g.

those for queries) use the service context handle when they are de-allocated. This was fixed by ensuring

that the service context is the last OCI handle to be de-allocated.

CORAL BACK-ENDS

ORACLE DIRECT ACCESS VIA OCI

CORAL “connection” and “session” for Oracle

Network glitch error reports

Preliminary bug fixes

Network glitch fix

To simulate a network glitch, the connection has been split into two branches:

The listener port of the database server is forwarded to a gateway port via ssh.

The client connects to the forwarded database listener on the gateway.

Our strategy consists in killing the ssh process to break the tunnel, simulating a

glitch in the client connection to the database.

