Reacting to database and network instabilities in CORAL

-

/ v' A distributed analysis mo

implies an in-homogeneity in the
data storage infrastructure across
the different institutes and across

the long LHC lifetime.

v The computing infrastructure
has to be easily maintainable and

adaptable.

del

Physics Applications
Common (AA software) or Experiment-Specific

Why
CORAL ?

o o

Conditions Data

v CORAL is a generic abstraction layer

o Object Storage,
Validity Int Is, i
alidity Intervals Meta Data (Collections),

File Catalogs

RDBMS access, Indirection, Secure Authentication,...

CORAL

with an SQL-free API for accessing
relational databases.

CORAL provides a set of C++ libraries
for several database back-ends:

v'Users write the same code for all back-ends

Computing Services
Databases, Grid Services,...

v’local access to SQLite files;
v'direct client access to Oracle and

v POOL is a generic hybrid store for C++ objects, metadata catalogues and collections,
using streaming and relational technologies.

v COOL provides specific software to handle the time variation and versioning of

conditions data.

v'A detailed knowledge of the many SQL flavors is not

MySQL ; .
ySQL servers required

v'read-only access to Oracle through the
FroNTier/Squid or
CoralServer/CoralServerProxy
server/cache system.

vThe SQL commands specific to each backend are
executed by the relevant CORAL libraries, which are
loaded at run-time by a special plugin infrastructure.

a

CORAL BACK-ENDS

——

C++ code of LHC experiments

A connection is a "physical circuit", a pathway to a database.

caral - ConnecitionService_conneod

(independent of DB choice) CC_)RAL is used by _ATLAS, CMS and LHCb] i))]] { "oracie:fidbserver.cem.cb .")
in most of the client applications that A session IS a user Process In communication with a server 7 O
COOL POOL use CORAL hysi dat t din O I i I i i
cxne diroctly R L SR TSR —. process. Users establish sessions against the instance, and the otz Y
: C
CORAL C++ API (technology-independent) instance then manages the access to the database. Q
XMLLookupSvec OracleAccess FrontierAccess CoralAccess SQLiteAccess h(nggquLA;:’i:;?:) ‘yC\
L)F(gé‘e\:fiﬁf‘s'sc e LERES Rl fEERRne RESRACEI) MySQL C API Client-side components Server-side components o@
(CORAL Plugins) OCI C API Frontier API coral protocol SQLite C API Y ﬁ | | OracleAc - d:p
AAX /\L /\;
ocl http http coral coral — g o
¢ H H = . Oracle OCI e Z
LFC server y SQlLite b = -) ‘;I:":"- 0 =
£1Es Aol o % DB (file) No longer used == o e O T ":."{c-' /o
authentication) P s qui d CORAL a i r=sic e |H_:|. _':'-:'-.l_
ch m | (web cache) proxy Y [09] Cb | Server Procless prﬂlﬂ-ﬂﬂ' ll.El.l
(S - > (cache) RS [OPEMN PORTSF K
= 5 ; iiCb E?/‘ : I - Session components _":_.L -
— n gl - N
@ s i 5 < \ T CORAL is now the most active of I b
Authientication XML - - the three Persistency packages: Database _JJ
(file) =— Fs'°“t'e' - saral - closer to lower-level services .n : _.I_.n; |
ST » used by COOL and POOL - - rac
(web server) V{4 V/4 V{4 V/4
g oracle p— ‘ CORAL “connection” and “session” for Oracle \gbaerver.com.c)
= 2 > server —— e
ocl

- Create OCIENv (via QCIEnvCraate)
- Create OCIError (via OClHandleAlloc)

OCISvcCtx
“service context handie™
One OCISvcCix per CORAL Session

Connection sharing?

f @ Initialize OCI (e.g. load Oracle client libraries)

@ Set up logical user session on DB server

OCIHandleAlloc

- Create OCISveCix (via OCIHandleAlloc)

- Link server connection 1o It (via OCIiAttrSet)

- Create OCJISession (via OClHandleAloc)

- Link it to service context (via OClAtrSet)

- Set sesslion’s user and password (via 2 x OCIAttrSet)
- Begin user session (via OCiSessionBegin)

- Create OCITrans (via OClHandleAlloc)

- Link it 1o service context (via OCIAtrSet)

- Start transaction (via OClTransStart)

Handle

Service Context

~
OCIiTrans
“transaction handle” or
- One OCIServer OClAtrSet OCIAtrSet “transaction context handle”
One CORAL Connection
() OCIAtrSet OneIOCITrans per CORAL Session J

- Many sets of (OCISvcCix, Server
OClSession, OCITrans) Handle

Handle

User Session

Transaction
Handle

using the same OClServer

(Many CORAL Sessions) OCTaEINARoS

OCIHandleAlloc

OCIHandleAlloc

OClServer OClSession
‘server handle” or “session handle” or
“server context handle” “session context handle”
_ One OCiServer per CORAL Connection One OCiSession per CORAL Session
@ @ Set up physical connection to DB server
- Create OCiServer (via OClHandieAlioc)

OC/I in CORAL OracleAccess

<z~ - Establish connection (via OClServerAttach) A. Valassi, R. Trentadue (2012)

During the last two years the three experiments that make use of CORAL
(ATLAS, CMS and LHCDb) experienced a similar issue: an Oracle error
appeared during the execution of some operations against the Oracle
database, even though in different circumstances.

ORA-03113!!!

The Oracle error found is: ORA-03113
In some cases, this triggered an infinite loop and caused an application hang.

As reported by the Oracle site:

“‘ORA-03113: end-of-file on communication channel

Cause: The connection between Client and Server process was broken.
Action: There was a communication error that requires further investigation. ”

The most likely cause of this issue is an instability of the network, leading
to a temporary connection break between client and server.

Network glitch error reports

Port forwarding - -

— |
SSH tunnel h‘ ‘

|Eﬂ£@mﬁﬂcl

To simulate a network glitch, the connection has been split into two branches:
v'The listener port of the database server is forwarded to a gateway port via ssh.
v'The client connects to the forwarded database listener on the gateway.

Our strategy consists in killing the ssh process to break the tunnel, simulating a
glitch in the client connection to the database.

session = svc.connect(tunnelUrl,

and start a user session

1, transaction = session.transaction() v’ Retrieve a transaction handle
S
121,0
%> = \W\\Yrrremeemee-- v .
9//} transaction.start(True) Start a transaction
S @ \\Vrmrmemmmeee-
’G&’ schema = .
JS& session.nominalSchemal) v Retrieve a schema handle
\Op ————————————
query =
schema.tableHandle(tableName). v’ Create a query
newQuery()

cursor = query.execute() v Execute the query

/)\
[ve
\
3 o
(¢
9&6 T,

Transaction RW,
read committed

Transaction RO,
serializable

When a network glitch
occurs, the reaction of

Update statement

Read statement

CORAL should depend on
the type and status of the
session and transaction.

Tl

|
X

XN

Reconnect Reconnect

Commit

vt
snapshot

gl g

Preliminary bug fixes

During the analysis of the network glitch two other bugs have been identified, both related to the deletion
order of the relevant CORAL objects (e.g. Session).

The first bug was that the destructors of many CORAL objects (e.g. Query) were using a Session already
deleted. A shared pointer to the Session has been defined to keep it alive longer than all other objects.

The second bug was due to a wrong deletion order for OCI handles. Internally, most OCI handles (e.g.
those for queries) use the service context handle when they are de-allocated. This was fixed by ensuring
that the service context is the last OCI handle to be de-allocated.

Network glitch fix

The validity of the connection and session is checked at the beginning of all crucial instructions
(whenever the OCI service context handle is needed). A probe function has been implemented using the
OClServerVersion function to checks the server accessibility.

If a network glitch is detected, CORAL reacts in the following way:

v" If the transaction is not active yet, CORAL triggers a reconnection for any type of session;

v If a transaction is already active, CORAL triggers a reconnection only if the transaction has been
started in RO read committed mode.

The reconnection procedure creates a new physical connection and starts a new user session.

CORAL achieves this by refreshing all OCI handles without de-allocating and re-allocating them.

