
IMPROVING SOFTWARE QUALITY OF

THE ALICE DATA-ACQUISITION

SYSTEM THROUGH PROGRAM

ANALYSIS

Jianlin Zhu, Jin Huang, Sylvain Chapeland,

Daicui Zhou, Guoping Zhang

CHEP2012, Kimmel Center, New York University,

May 21-25, 2012

OUTLINE

 1. Introduction

1.1 ALICE Data Acquisition
System

1.2 Aspect Mining

 2. Background

2.1 Concern

2.2 Crosscutting Concern

 3. Aspect Mining Approaches

3.1 Fan-In

3.2 PageRank

3.3 HITS

3.4 SimCorr

• 4. Experiments

4.1 Program Analysis
Framework

4.2 Fan-In

4.3 The Similarity between
elements

4.4 Corsscutting Concerns

4.4.1 Special Functions

4.4.2 Identifying
Crosscutting Concern

• 5. Future Work

• 6. Conclusion

• 7. Suggestions

1. INTRODUCTION

 1.1. ALICE Data Acquisition System

 The Data-Acquisition System designed by ALICE,

which is the experiment dedicated to the study of

strongly interacting matter and the quark-gluon

plasma at the CERN LHC, is to handle the data flow

from the sub-detector electronics to the archiving on

different kinds of storage.

 The software framework of the ALICE data

acquisition system is called DATE (ALICE Data

Acquisition and Test Environment) and consists of a

set of software packages which could be grouped into

main logic packages and utility packages.

1.1. ALICE DATA ACQUISITION SYSTEM
 Modules in DAQ are banksManager,

bufferManager, cole, commonDefs,
dateStream, db, editDb, edm, eventBuilder,
fec, hltAgent, infoLogger, logbook,
monitoring, mrorc, mStreamRecorder,
physmem, readList, readout, recordingLib,
ReleaseNotes, rorc, runControl, simpleFifo,
tdsm, trigger.

 In the Figure 1, the modules in DAQ could
be separated into the three layers:

 (1) OS layer. This layer include DDL driver,
Physmem driver.

 (2) Library space layer. This layer provides
many basic interfaces to the hardware
drivers, special structures designed for
data taking and recording, libraries for
logging, monitoring, memory managing,
etc.

 (3) Application space layer. This layer
consists of all kinds of applications which
are applied in the different situation.

1.2 ASPECT MINING

 To improve the modularization of software

system, the Aspect-Oriented Programming(AOP)

has been introduced since 1990s. Software

modification and maintenance benefit from the

separation of crosscutting concerns(CCs).

 The process of refactoring legacy software system

is divided into 2 steps: aspect mining(identifying

crosscutting concerns in legacy software), and

aspect refactoring(refactoring them into aspect).

1.2 ASPECT MINING

 We propose a program analysis framework which

includes many aspect mining approaches and could be

used to analyze the DATE. For different research

purposes, the suitable algorithms could be applied in

DATE and the results could help people more

understand the source codes even it has been

developed for many years. From the program analysis

framework, We could obtain statistical information

about each program elements, find the similar

elements related with each element, query graph of

program and get the final ranking for aspect mining.

Our framework is effective regardless of various

programming languages of different type.I n this paper,

we evaluation it on C projects like DATE.

2. BACKGROUND

 2.1 Concern

In the Software Management area,
modularization is to manage the source codes
well in order to efficiently query and edit.
Managing codes is modularity.
In computer science, a concern is of similar
function or the set of functions to accomplish
one purpose.

2.1 CONCERN

The problems exist in source codes are described as

follows:

 Code Scattering-”Scattering” is that similar code

is distributed throughout many program modules.

Software maintenance may require

searching,querying and editing all affected code.

 Code Tangling- ”Tangling” is when two or more

concerns are implemented in the same body of

code or component, making it more difficult to

understand. Changes to one implementation may

cause unintended changes to other tangled

concerns.

2.2 CROSSCUTTING CONCERN

 The source codes includes two type of elements:

core elements and crosscutting elements. The

Crosscutting Concerns(CC) is not the Core

modules, it is just the concern that provides

aiding functions to core modules.

 CC are the features of a software system that

are hard to isolate, and whose implementation

spread across many different modules. One

important feature of the CC is that it has a high

degree of scattering.

2.2 CROSSCUTTING CONCERN

There features about CC are summarized as

follows:

 Fan-In: We observed that the Fan-In value of CC

is high, so we could know that if the Fan-In value

of an element is high, it has a high probability to

be CC.

 Scattering : The implementation of CC is spread

across many different modules.

 Popularity: the node of high Fan-In often has a

high Popularity value, so we could know that if

the Popularity value of an element is high, it has

a high probability to be CC.

2.2 CROSSCUTTING CONCERN

For measuring the characteristic of CC, many aspect

mining approaches we could use to get the value for

looking deep inside into the system. Such as , the

following four values are very common in the recent

research work.

 Fan-In value: do the counting of in-degree for each

element.

 Scattering degree: couple graph which is extracted

from the source codes based on the call relationship.

 Popularity value: the ranking value got from a couple

graph in the direction of In-Degree.

 Significance value: the ranking value got from a

coupe graph in the direction of Out-Degree.

3. ASPECT MINING APPROACHES

 The quality of aspect mining play an important

role in identifying code related to a CC. Several

aspect mining approaches has been developed to

help programmers to identify CCs.

 4 algorithms are introduced, Fan-In, PageRank,

HITS, SimCorr. SimCorr is our new algorithm to

calculate the similarity between elements.

3.1 FAN-IN

 We define Fan-In of a method m as the number of

distinct method bodies that can invoke m.

 We observed that the Fan-In value of CC is high,

so we could know that if the Fan-In value of an

element is high, it has a high probability to be CC.

3.1 FAN-IN

 Although Fan-In analysis can find CC candidates, it is

not accurate to measure scattering only with reference

frequency. Let us consider the example in Figure (3).

Element A is referenced by many elements in one

module, while B is referenced by less elements from 2

modules. Obviously B is more likely to be a

crosscutting concern than A.

3.2 PAGERANK

 we review google’s PageRank algorithm and interpret

its functionality for decoupling while surfing the

dependency graph of program. A program element

obtains high probability of being a CC candidate if it is

referenced by a large number of elements.

 In Equation (1), The factor d is the damping factor

which 0 < d < 1,and (1−d)is the probability of jumping

from each vertex to vertex u.

3.2 PAGERANK

 PageRank are performed on the coupling graph

extracted from the program sources. PageRank

 generates ranks reflecting the degrees of

popularity and significance for each of the

program elements on the coupling graphs. The

node of high Fan-In often has a high popularity

value, so we could know that if the popularity

value of an element is high, it has a high

probability to be CC.

 The advantage of PageRank is its transitivity

feature, but it could not solve ”high scattering,

low Fan-In” problem.

3.3 HITS

 we review HITS algorithm and interpret its
functionality for decoupling dependency graphs for
programs.

 The HITS algorithm is another link-based rank
algorithm for co-citation and web hyperlinks.

 In this algorithm each vertex has two state variables:
authority variable which means the its possibility of
be a information source page, and hub variable which
means the its possibility of be a page linking to
information source.

 According to the two state variables of vertices, we
consider the vertices of high hub-ranking the good
linking vertices and the vertices of high authority-
ranking the good

 information source vertices.

3.3 HITS

 In Equation (3), where aq is the authority variable of vertex

q, hq is the hub variable of vertex q, pa(q) is the vertices set

in which the vertices link to vertex q and ch(q) is the

vertices set in which the vertices is linked by vertex q.

 For a specific program element, HITS can get the authority

value which is probability of being a function

implementation and the hub value which is the probability

of being a core logic. HITS considers the integration and

implementation property of a program element,

3.4 SIMCORR

 we propose our novel approach to measure the

similarity between elements even when they are

not connected. The SimCorr is very useful when

we want to how many repeated functions existed

in the source codes or whether the connection

inside one e module is highly interrelated.

3.4 SIMCORR

 Two elements are determined to be similar if they reference

many common or similar elements, or they are referenced by

many common or similar elements.

 In program dependency graph such as call graph, two methods

are considered to be similar if they reference a lot of common

methods or fields as Figure (4-A) shows. However, we can not say

they are similar if they are called by the common methods, since

methods from different concerns can be called in the same

method shown in Figure (4-B). Furthermore, it is common that

similar methods are not called by the same method since they

maybe implement different functions of a concern.

3.4 SIMCORR

 We use the iterative formula (5) to compute the

similarity scores between the program elements.

 In the Equation (5), s(a, b) is the similarity score

between elements a and b. O(a) is the element set of

a’s successors, |O(a)| is the out-degree of a, Oi(a) is

the a’s ith successor. |Ii(a)| is the in-degree of a’s ith

successor. t is the adjustment parameter for

optimization purpose.

3.4 SIMCORR
 During the experiments, we have an observation that

similarity score between elements will be reinforced if they

reference each other, which is called Similarity Sink, for

example in Figure (4-D). Algorithm 1 is used to solve this

problem.

4. EXPERIMENTS

 4.1 Program Analysis Framework

We implement PAF (Program Analysis Framework)
to analyze the software architecture and software
modularity.
The basic idea about PAF is recording the call
relationships information among the important
elements (i.e., functions, global variables, complex
structures) firstly and then using the different
analysis
algorithms to find the CCs which could destroy the
modularity of the software from this recording
information.

4.1 PROGRAM ANALYSIS FRAMEWORK

 The PAF is based on the API of Eclipse C/C++

Development Tooling(CDT)

 The version information of the main softwares and

platform is listed as follows:

Version of Java is above 1.6.

Version of Eclipse is 3.6.2.

The source code of DAQ is date-
7.6.2.src.tar.gz. Version of DIM is 19.17.
Version of SMI is 42.

4.2 FAN-IN

 We calculate the fan-in value of all the program elements we
extracted from DAQ. We give two examples to see top frequency
called elements.

 In Table (1), top 10 highest called functions are shown. We could

 find that many elements with high fan-in provide logging and
monitoring functions. Specially, many elements from rorc module are
also used frequently.

4.2 FAN-IN
 From the Table (2), rcShm is the global variable, many elements are

the complex variables (e.g., eventHeaderStruct, rorc_pci _dev_t,

equipmentHeaderStruct, eventDescriptorStruct, rorcHandle_t).

4.3 THE SIMILARITY BETWEEN ELEMENTS

 we give experiment to illustrate the effectiveness of our SimCorr

approach to group similar elements.

 In Table (3), the similar elements to function – infoLog, the top 10

similar elements to infoLog are all from the file libInfo.c.

4.3 THE SIMILARITY BETWEEN ELEMENTS
 In Table (4), there are top 10 similar elements to function – rorcClose.

In fact, there are only around 10 elements which have similar value

to rorcClose, the similarity value with other thousand elements is

zero. There are 7 functions from the same file like rorcClose, 2

functions from other 2 modules.

4.3 THE SIMILARITY BETWEEN ELEMENTS

 In Table (5), there are only 6 similar elements to function -

/DAQ/logbook/DAQlogbook.c/errlog(constchar,). We calculate the

similar value for every element in the DAQ, and this is very

useful when the developers want to look deep into the source

codes and hope the system could provide more valuable

information about the program elements they care about.

4.4 CROSSCUTTING CONCERNS
 4.4.1 Special Functions. There are many methods with the same

name and function which distribute in many modules, such as usage,

C message, doFatalExit, dumpEventId, reportEnd, UPPER,

dumpEventType, initVars, signal handler, decodeEventId, etc. We

give 10 examples in Table (6) with the information of Function name,

Times which means how many times it has been used, Distribution

which means the name of modules have this function.

4.4.1 SPECIAL FUNCTIONS

 There are main three situations for these kind of
functions which could be summarized as follows:

 (1) Some functions which are defined in many files
have the same context. These kind of functions exist
in many modules. In runControl module,
runControl.c , rcServer.c and runControlHI.c share
many the same context functions. monitorPartitions.c,
monitorGdcs.c, and monitorByDetector.c in
monitoring module are the same.

 (2) Different functions with the same name appear in
different modules and files, such as dumpBuffer in
readList and monitoring modules.

 (3) the same function with different names, such as
print usage and usage.

4.4.2 IDENTIFYING CROSSCUTTING

CONCERN

 In order to define crosscutting features in DAQ, we
have defined various levels at which a concern
crosscuts through the system functionality. These
levels are defined in Table (7). The purpose of such a
classification is to know how scattered the concerns
are across the code base.

4.4.2 IDENTIFYING CROSSCUTTING CONCERN

 We summarize below the DAQ aspects with their

functionality and crosscutting natures. Figure 7 shows the

crosscutting of the DAQ aspects. Detail information is

described in our paper. We give 1 example.

 RecordingLibrary(R): This concern is the low-level recording

library which is used by processes who need full control over

their output channels. It provides the functions to handle a

set of channels (for multiple part parallel output streams)

and allows both synchronous and asynchronous output. In

the DAQ system, the code crosscuts through 2

modules(eventBuilder, recordingLib) for controlling over the

output channels. In eventBuilder module, the ldcHandler.c

and recordingHandler.c use the RecordingLibrary

crosscutting concern; In recordingLib module,

datenetperfldc.c, validator.c, dateRec.c and recordingLib.c

use the RecordingLibrary crosscutting concern.

4.4.2 IDENTIFYING CROSSCUTTING

CONCERN

 The aspect crosscutting level of crosscutting concerns

mentioned above is summarized in Table (8).

5. FUTURE WORK

 Our goal in the future is to do the research work

on the complex network and try to automatically

analyze the software systems with the graph

clustering approaches.

 A longer term plan is an aspect mining tool that

combines several analysis techniques to

accomplish a higher degree of completeness and

precision.

6. CONCLUSION

 The Program Analysis Framework is built for

analyzing the C projects

 This is the first time for us to analyze the DAQ

system with many aspect mining approaches.

 SimCorr is adopted to measure the similarity

between the program elements.

7. SUGGESTIONS

 We hope this work could get more advices and

suggestions, so we could try to mine more valuable

information from the software systems and more

optimization steps could be applied into the source

codes.

Thank you so much , the end of presentation!

