
C
o

m
p

u
ti

n
g

 i n
 H

ig
h

 E
n

er
g

y
P

h
ys

ic
s

–
D

irk
 H

of
fm

an
n,

 M
ay

 2
4th

, 2
01

2

CHEP2012 – Online Computing

10Gigabit-Ethernet Event-
Builder for a Cherenkov for a Cherenkov

Telescope ArrayTelescope Array
Dirk Hoffmann, Julien Houles
Centre de Physique des Particules
de Marseille

C
o

m
p

u
ti

n
g

 i n
 H

ig
h

 E
n

er
g

y
P

h
ys

ic
s

–
D

irk
 H

of
fm

an
n,

 M
ay

 2
4th

, 2
01

2

Outline

■ Experimental Context, Constraints

■ Hardware Choice

■ Event-Builder Design

■ Data Generation (test-bench stimulator)

■ First Results in standard Linux

■ Consequences, Interpretation, Prospects

C
o

m
p

u
ti

n
g

 i n
 H

ig
h

 E
n

er
g

y
P

h
ys

ic
s

–
D

irk
 H

of
fm

an
n,

 M
ay

 2
4th

, 2
01

2

How the experiment may look like

■ 100 Cherenkov Telescopes on each of 2 sites
■ Three to four different sizes

■ Up to 3000 pixels per camera (telescope)
■ Genuine data rate approx. 20 Gbps
■ Full readout or compression in front-end

(electronics)? Increase sensitivity/rates?

C
o

m
p

u
ti

n
g

 i n
 H

ig
h

 E
n

er
g

y
P

h
ys

ic
s

–
D

irk
 H

of
fm

an
n,

 M
ay

 2
4th

, 2
01

2

Schematic View

■ 20 Gbps total

■ Groups of 7 pixels per
front-end board:

70 Mbps per board

■ Merged by
Camera switch

■ Collected by
Camera Server

■ Occupancy 1%
■ 200 Mbps down-

stream (20 Gbps)

<<FPGA>>

Cluster readout

<<FPGA>>

Cluster readout

<<FPGA>>

Cluster readout

<<FPGA>>

Cluster readout

<<FPGA>>

Cluster readout

<<FPGA>>

Cluster readout

<<DAQ>>

Camera readout

(×300 in total)

<<DAQ>>

Camera readout

<<DAQ>>

Camera readout

<<DAQ>>

Camera readout

Central Trigger

Downst ream DAQ

(×100 in total) Central Event

Bui l der

C
o

m
p

u
ti

n
g

 i n
 H

ig
h

 E
n

er
g

y
P

h
ys

ic
s

–
D

irk
 H

of
fm

an
n,

 M
ay

 2
4th

, 2
01

2

<<FPGA>>

Cluster readout

<<FPGA>>

Cluster readout

<<FPGA>>

Cluster readout

<<FPGA>>

Cluster readout

<<FPGA>>

Cluster readout

<<FPGA>>

Cluster readout

<<DAQ>>

Camera readout

(×300 in total)

<<DAQ>>

Camera readout

<<DAQ>>

Camera readout

<<DAQ>>

Camera readout

Central Trigger

Downst ream DAQ

(×100 in total) Central Event

Bui l der

Schematic View

■ 20 Gbps total

■ Groups of 7 pixels per
front-end board:

70 Mbps per board

■ Merged by
Camera switch

■ Collected by
Camera Server

■ Occupancy 1%
■ 200 Mbps down-

stream (20 Gbps)

this talk

C
o

m
p

u
ti

n
g

 i n
 H

ig
h

 E
n

er
g

y
P

h
ys

ic
s

–
D

irk
 H

of
fm

an
n,

 M
ay

 2
4th

, 2
01

2

DAQ Requirements

■ Average full data stream of 20 Gbps

■ Needs reduction.
■ Trigger selection (obviously done)
■ Compression on board (fit, parameters): ToT, amplitude
■ Reconstruction in camera and second level filter
■ Compression (lossless?) in Camera-Server

■ O(n·100) datasources
■ Reliable event-building

■ Cohabitation with Slow Control Traffic possible?

■ Optimised cost, industrialisation for the array!

C
o

m
p

u
ti

n
g

 i n
 H

ig
h

 E
n

er
g

y
P

h
ys

ic
s

–
D

irk
 H

of
fm

an
n,

 M
ay

 2
4th

, 2
01

2

Hardware choice

■ Selection of COTS hardware for cost ALARA

■ Generic test of state-of-the-art technologies
■ Powerconnect 6248

■ 48× 1Gbps (RJ45)
■ 4× 10Gbps (SFP+)
■ 4× 1Gbps (SFP)
■ stackable (max. 12)

with backplane ic
■ Jumbo frame support

■ Precision T7500 Server

■ 2×Xeon X5650
2.7GHz, 6.4GT/s,
12MB, 6 cores

■ Intel X520 DA2
10GbE dual port SFP+
on PCIe×8

■ GPU (PCIe×16) option

12 cores @ 2.7GHz

C
o

m
p

u
ti

n
g

 i n
 H

ig
h

 E
n

er
g

y
P

h
ys

ic
s

–
D

irk
 H

of
fm

an
n,

 M
ay

 2
4th

, 2
01

2

Event Builder

■ Collect event fragments:
■ Typical event per board has 1kB size

Bundle them in front-end? May vary!
■ UDP protocol chosen for transfer
■ Jumbo frame support (MTU>1518)

■ Build events
■ 20 (later 24) Gbps input / 200Mbps output

■ Minimize workload (cost and cohabitation!)

C
o

m
p

u
ti

n
g

 i n
 H

ig
h

 E
n

er
g

y
P

h
ys

ic
s

–
D

irk
 H

of
fm

an
n,

 M
ay

 2
4th

, 2
01

2

Software design #1

■ Three-stage DAQ: receive, build, send

...

...

Events

taskComputeEventDaq

1..n

taskReceiveDaq

taskBuildEventDaq

...

1

1..n

Packets

Front-end #1

taskReceiveDaq

taskBuildEventDaq

...

1

1..n

Packets

Front-end #2

taskReceiveDaq

taskBuildEventDaq

...

1

1..n

Packets

Front-end #N
Packet
received

Packet
received

Packet
received

■ All threads bound
to same processor

C
o

m
p

u
ti

n
g

 i n
 H

ig
h

 E
n

er
g

y
P

h
ys

ic
s

–
D

irk
 H

of
fm

an
n,

 M
ay

 2
4th

, 2
01

2

Software design #2

■ Two-stage DAQ: receive + build combined

■ All threads bound
to same processor

...

Events

taskComputeEventDaq

1..n

Task
ReceiveDaq

+
BuildEvent

1

Front-end #1

Task
ReceiveDaq

+
BuildEvent

1

Front-end #2

Task
ReceiveDaq

+
BuildEvent

1

Front-end #N
Packet
received

Packet
received

Packet
received

C
o

m
p

u
ti

n
g

 i n
 H

ig
h

 E
n

er
g

y
P

h
ys

ic
s

–
D

irk
 H

of
fm

an
n,

 M
ay

 2
4th

, 2
01

2

Software design #2

■ Two-stage DAQ: receive + build combined

■ All threads bound
to same processor

...

Events

taskComputeEventDaq

1..n

Task
ReceiveDaq

+
BuildEvent

1

Front-end #1

Task
ReceiveDaq

+
BuildEvent

1

Front-end #2

Task
ReceiveDaq

+
BuildEvent

1

Front-end #N
Packet
received

Packet
received

Packet
received

How can we validate
 this without a detector?

Can we?

C
o

m
p

u
ti

n
g

 i n
 H

ig
h

 E
n

er
g

y
P

h
ys

ic
s

–
D

irk
 H

of
fm

an
n,

 M
ay

 2
4th

, 2
01

2

Data Generation, DAQ S[t]imulator

■ DAQ is prototype, electronics as well.

■ Simulate camera on site at lowest cost
⇒ Side-effect and real requirement!

■ Hence build a “camera simulator”
to stimulate the Event-Builder DAQ

C
o

m
p

u
ti

n
g

 i n
 H

ig
h

 E
n

er
g

y
P

h
ys

ic
s

–
D

irk
 H

of
fm

an
n,

 M
ay

 2
4th

, 2
01

2

Stimulator: optimum

■ High-bandwidth is standard, many ports isn't!

■ Found a 50€/port candidate (EVOC)

■ 6×1000baseT (via PCIe each)

■ Internal architecture is relevant.
■ PCI 32/64 = 133/266 MBps
■ PCIe = 500 MBps (here: PCIe v1.1 = 250 MBps)

C
o

m
p

u
ti

n
g

 i n
 H

ig
h

 E
n

er
g

y
P

h
ys

ic
s

–
D

irk
 H

of
fm

an
n,

 M
ay

 2
4th

, 2
01

2

Stimulator: reality (for now)

■ 10 “borrowed” GRID PCs = 10×2×1000baseT

■ One PC simulates 30 front-end
boards (UDP server).

■ 15 UPD servers from each PC
per SFP+ interface

■ 2×10Gbps
SFP+

C
o

m
p

u
ti

n
g

 i n
 H

ig
h

 E
n

er
g

y
P

h
ys

ic
s

–
D

irk
 H

of
fm

an
n,

 M
ay

 2
4th

, 2
01

2

Results

■ All events assembled and checked (no I/O)

■ No loss of packets

■ Standard h/w

■ Standard s/w (SL6 drivers, libraries)

Packet size Three-stage architecture Two-stage architecture

Jumbo
(8192 bytes)

19.2 Gbps (2.4 GBps)
CPU load: 300%

19.2 Gbps (2.4 GBps)
CPU load: 160%

Regular
(1024 bytes)

6.5 Gbps (820 MBps)
CPU load: 300%

8 Gbps (1.0 GBps)
CPU load: 170%

C
o

m
p

u
ti

n
g

 i n
 H

ig
h

 E
n

er
g

y
P

h
ys

ic
s

–
D

irk
 H

of
fm

an
n,

 M
ay

 2
4th

, 2
01

2

Interpretation

2-lvl arc 3-lvl arc
0

2

4

6

8

10

12

14

16

18

20

0

50

100

150

200

250

300

35019,2 19,2

6,5

8

jumbo CPU load regular CPU load
■ Significant loss of

performance for
“small” frames

■ 2-lvl architecture
outperforms
3-lvl architecture:
Less than 2 cores
needed

C
o

m
p

u
ti

n
g

 i n
 H

ig
h

 E
n

er
g

y
P

h
ys

ic
s

–
D

irk
 H

of
fm

an
n,

 M
ay

 2
4th

, 2
01

2

Interpretation

2-lvl arc 3-lvl arc
0

2

4

6

8

10

12

14

16

18

20

0

50

100

150

200

250

300

35019,2 19,2

6,5

8

jumbo CPU load regular CPU load
■ Significant loss of

performance for
“small” frames

■ 2-lvl architecture
outperforms
3-lvl architecture:
Less than 2 cores
needed

■ Where is the bottleneck?

C
o

m
p

u
ti

n
g

 i n
 H

ig
h

 E
n

er
g

y
P

h
ys

ic
s

–
D

irk
 H

of
fm

an
n,

 M
ay

 2
4th

, 2
01

2

Limitations and possible Solutions

■ Standard libraries / drivers provide optimal
performance (assuming optimal data formats).

■ Moore's law helps to overcome wildest dreams
(or bad design).

■ But CPU / IC design hits the limit of power
dissipation before the limit of 1 Å or c.

C
o

m
p

u
ti

n
g

 i n
 H

ig
h

 E
n

er
g

y
P

h
ys

ic
s

–
D

irk
 H

of
fm

an
n,

 M
ay

 2
4th

, 2
01

2

“Free lunch is over.”

■ Computing power
is increased by

multiplying the
number of cores
and CPUs

rather than in-
creasing clock
frequency

■ UNLIKE
NETWORKS!

C
o

m
p

u
ti

n
g

 i n
 H

ig
h

 E
n

er
g

y
P

h
ys

ic
s

–
D

irk
 H

of
fm

an
n,

 M
ay

 2
4th

, 2
01

2

A loong way to 10 Gbps

■ But software architectures are still the same.
■ raw socket, BPF, libpcap
■ mbuf/skbuf/NdisPacket encapsulation
■ one system call per packet, poor parallelism

■ Even with faster clock speeds, some things do not scale:
■ memory and bus latency, system calls

■ 1980-2010:
■ 4 Mbps (token ring)
■ 10Gbps (25 soon?)

Courtesy L. Rizzo, U Pisa

C
o

m
p

u
ti

n
g

 i n
 H

ig
h

 E
n

er
g

y
P

h
ys

ic
s

–
D

irk
 H

of
fm

an
n,

 M
ay

 2
4th

, 2
01

2

What next?

■ Recent work on libraries to replace
30-year old Unix/Linux driver technology,

Using direct access to network components
(h/w – memory map)
(This is critical by default, due to
access of kernel memory!)

■ Need work on both sides!
TX/RX

■ Increased to 7.1 Gbps in
first tests on single link
with regular packets

■ More about this in Amsterdam 2013?
2-lvl arc

0

2

4

6

8

10

12

14

16

18

20

0

2

4

6

8

10

12

14

16

18

2019,2

8

jumbo regular regular, direct
access

PRELIM
INARY

C
o

m
p

u
ti

n
g

 i n
 H

ig
h

 E
n

er
g

y
P

h
ys

ic
s

–
D

irk
 H

of
fm

an
n,

 M
ay

 2
4th

, 2
01

2

Conclusion

■ It is relatively easy to build a 10Gbps data
transfer and collection system (Event-Builder).

■ With COTS hardware
■ Combining multiple data sources
■ With reasonably low CPU load (2-3 cores)
■ Using standard Linux drivers and libraries
■ Packaging data in maximum sized packets.

■ Discrepancy between progress in CPU/IC and
network technology necessitates new h/w access
methods.

